Research article
26 Nov 2018
Research article | 26 Nov 2018
Microbial processes in the weathering crust aquifer of a temperate glacier
Brent C. Christner et al.
Related authors
A new methodology to simulate subglacial deformation of water-saturated granular material
A. Damsgaard, D. L. Egholm, J. A. Piotrowski, S. Tulaczyk, N. K. Larsen, and C. F. Brædstrup
The Cryosphere, 9, 2183–2200, https://doi.org/10.5194/tc-9-2183-2015,https://doi.org/10.5194/tc-9-2183-2015, 2015
Short summary
Cited articles
Abbasi, S. A. and Chari, K. B: Environmental management of urban lakes: with
special reference to Oussudu, Discovery Pub. House, New Delhi, India,
2008.
Anesio, A. M., Hodson, A. J., Fritz, A., Psenner, R., and Sattler, B.: High
microbial activity on glaciers: importance to the global carbon cycle, Glob.
Change Biol., 15, 955–960, https://doi.org/10.1111/j.1365-2486.2008.01758.x, 2009.
Anesio, A. M., Sattler, B., Foreman, C., Telling, J., Hodson, A., Tranter,
M., and Psenner, R.: Carbon fluxes through bacterial communities on glacier
surfaces, Ann. Glaciol., 51, 32–40, https://doi.org/10.3189/172756411795932092, 2010.
Anesio, A. M., Lutz, S., Christmas, N. A. M., and Benning, L. G: The
microbiome of glaciers and ice sheets, NPJ Biofilms Microbiomes, 3, 10,
https://doi.org/10.1038/s41522-017-0019-0, 2017.
Arcone, S. A., Lawson, D. E., and Delaney, A. J.: Short-pulse radar wavelet
recovery and resolution of dielectric contrasts within englacial and basal
ice of Matanuska Glacier, Alaska, USA, J. Glaciol., 41, 68–86,
https://doi.org/10.3189/S0022143000017779, 1995.
Bamber, J. L. and Aspinall, W. P: An expert judgement assessment of future
sea level rise from the ice sheets, Nat. Clim. Change, 3, 424–427,
https://doi.org/10.1038/nclimate1778, 2013.
Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Wheeler,
D. L.: GenBank, Nucleic Acids Research, Oxford University Press, Oxford,
UK, 36 (Database issue), p. D25, 2008.
Bolger, A. M., Lohse, M., and Usadel, B.: Trimmomatic: A flexible trimmer for
Illumina sequence data, Bioinformatics, 30, 2114–2120,
https://doi.org/10.1007/s12686-017-0754-9, 2014.
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J.,
Fierer, N., Owens, S. M., Betley, J., Fraser, L., Bauer, M., and Gormley, N.:
Ultra-high-throughput microbial community analysis on the Illumina HiSeq and
MiSeq platforms, ISME J., 6, 1621–1624, https://doi.org/10.1038/ismej.2012.8, 2012.
Christner, B. C., Priscu, J. C., Achberger, A. M., Barbante, C., Carter, S.
P., Christianson, K., Michaud, A. B., Mikucki, J. A., Mitchell, A. C.,
Skidmore, M. L. Vick-Majors, T. J., and the WISSARD Science Team: A microbial
ecosystem beneath the West Antarctic Ice Sheet, Nature, 512, 310–313,
https://doi.org/10.1038/nature13667, 2014.
Chu, V. W.: Greenland ice sheet hydrology: a review, Prog. Phys. Geogr., 38,
19–54, https://doi.org/10.1177/0309133313507075, 2014.
Clark, E. B., Bramall, N. E., Christner, B., Flesher, C., Harman, J., Hogan,
B., Lavender, H., Lelievre, S., Moor, J., Siegel, V., and Stone, W. C.: An
intelligent algorithm for autonomous scientific sampling with the VALKYRIE
cryobot, Int. J. Astrobiol., 17, 247–257, https://doi.org/10.1017/S1473550417000313,
2017.
Cook, J. M., Hodson, A. J., and Irvine-Fynn, T. D.: Supraglacial weathering
crust dynamics inferred from cryoconite hole hydrology, Hydrol. Process., 30,
433–446, https://doi.org/10.1002/hyp.10602, 2016.
Cooper, M. G., Smith, L. C., Rennermalm, A. K., Miège, C., Pitcher, L.
H., Ryan, J. C., Yang, K., and Cooley, S. W.: Meltwater storage in
low-density near-surface bare ice in the Greenland ice sheet ablation zone,
The Cryosphere, 12, 955–970, https://doi.org/10.5194/tc-12-955-2018, 2018.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
Edwards, A. and Cameron, K. A.: Microbial life in supraglacial environments,
in: Psychrophiles: From Biodiversity to Biotechnology, chap. 4, Springer,
Cham, Switzerland, 2017.
Ensminger, S. L., Evenson, E. B., Larson, G. J., Lawson, D. E., Alley, R. B.,
and Strasser, J. C.: Preliminary study of laminated, silt-rich debris bands:
Matanuska Glacier, Alaska, USA, Ann. Glaciol., 28, 261–266,
https://doi.org/10.3189/172756499781821850, 1999.
Fitzpatrick, A. A. W., Hubbard, A. L., Box, J. E., Quincey, D. J., van As,
D., Mikkelsen, A. P. B., Doyle, S. H., Dow, C. F., Hasholt, B., and Jones, G.
A.: A decade (2002–2012) of supraglacial lake volume estimates across
Russell Glacier, West Greenland, The Cryosphere, 8, 107–121,
https://doi.org/10.5194/tc-8-107-2014, 2014.
Fountain, A. G., Jacobel, R. W., Schlichting, R., and Jansson, P.: Fractures
as the main pathways of water flow in temperate glaciers, Nature, 433,
618–621, https://doi.org/10.1038/nature03296, 2005.
Gardner, A. S. and Sharp, M. J.: A review of snow and ice albedo and the
development of a new physically based broadband albedo parameterization, J.
Geophys. Res.-Earth, 115, F01009, https://doi.org/10.1029/2009JF001444, 2010.
Hadziavdic, K., Lekang, K., Lanzen, A., Jonassen, I., Thompson, E. M., and
Troedsson, C.: Characterization of the 18S rRNA gene for designing universal
eukaryote specific primers, PLoS ONE, 9, e87624,
https://doi.org/10.1371/journal.pone.0087624, 2014.
Hawes, I. and Schwarz, A. M.: Absorption and utilization of irradiance by
cyanobacterial mats in two ice-covered Antarctic lakes with contrasting light
climates, J. Phycol., 37, 5–15, https://doi.org/10.1046/j.1529-8817.1999.014012005.x,
2001.
Hodson, A., Cameron, K., Bøggild, C., Irvine-Fynn, T., Langford, H.,
Pearce, D., and Banwart, S.: Glacial ecosystems, Ecol. Monogr., 78, 41–67,
https://doi.org/10.1890/07-0187.1, 2008.
Hodson, A., Cameron, K., Bøggild, C., Irvine-Fynn, T., Langford, H.,
Pearce, D., and Banwart, S.: The structure, biological activity and
biogeochemistry of cryoconite aggregates upon an Arctic valley glacier:
Longyearbreen, Svalbard, J. Glaciol., 56, 349–362,
https://doi.org/10.3189/002214310791968403, 2010.
Hodson, A., Paterson, H., Westwood, K., Cameron, K., and Laybourn-Parry, J.:
A blue-ice ecosystem on the margins of the East Antarctic Ice Sheet, J.
Glaciol., 59, 255–268, https://doi.org/10.3189/2013JoG12J052, 2013.
Hopes, A., Thomas, D. N., and Mock, T.: Polar microalgae: functional
genomics, physiology, and the environment, in: Psychrophiles: From
Biodiversity to Biotechnology, chap. 14. Springer, Cham, Switzerland, 2017.
Irvine-Fynn, T. D. and Edwards, A.: A frozen asset: the potential of flow
cytometry in constraining the glacial biome, Cytometry A, 85, 3–7,
https://doi.org/10.1002/cyto.a.22411, 2014.
Irvine-Fynn, T. D. L., Edwards, A., Newton, S., Langford, H., Rassner, S. M.,
Telling, J., Anesio, A. M., and Hodson, A. J.: Microbial cell budgets of an
Arctic glacier surface quantified using flow cytometry, Environ. Microbiol.,
14, 2998–3012, https://doi.org/10.1111/j.1462-2920.2012.02876.x, 2012.
Karlstrom, L., Zok, A., and Manga, M.: Near-surface permeability in a
supraglacial drainage basin on the Llewellyn Glacier, Juneau Icefield,
British Columbia, The Cryosphere, 8, 537–546, https://doi.org/10.5194/tc-8-537-2014,
2014.
Kumar, S., Stecher, G., and Tamura, K.: MEGA7: Molecular Evolutionary
Genetics Analysis version 7.0, Mol. Biol. Evol., 33, 1870–1874,
https://doi.org/10.1093/molbev/msw054, 2016.
LaChapelle, E.: Errors in ablation measurements from settlement and
sub-surface melting, J. Glaciol., 3, 458–467,
https://doi.org/10.3189/S0022143000017202, 1959.
Langford, H., Hodson, A., Banwart, S., and Bøggild, C.: The microstructure
and biogeochemistry of Arctic cryoconite granules, Ann. Glaciol., 51, 87–94,
https://doi.org/10.3189/172756411795932083, 2010.
Langley, E. S., Leeson, A. A., Stokes, C. R., and Jamieson, S. S.: Seasonal
evolution of supraglacial lakes on an East Antarctic outlet glacier, Geophys.
Res. Lett., 43, 8563–8571, https://doi.org/10.1002/2016GL069511, 2016.
Lim, Y. I. and Jørgensen, S. B.: Distributed Dynamic Models and
Computational Fluid Dynamics, in: Computer Aided Process and Product
Engineering (CAPE), chap. 2, Wiley-VCH, Weinheim, Germany, 2006.
Lutz, S., McCutcheon, J., McQuaid, J. B., and Benning, L. G.: The diversity
of ice algal communities on the Greenland Ice Sheet as revealed by
oligotyping, Microb. Genom., 4, e000159, https://doi.org/10.1099/mgen.0.000159, 2018.
Mankoff, K. D. and Russo, T. A.: The Kinect: A low-cost, high-resolution,
short-range 3D camera, Earth Surf. Proc. Land., 38, 926–936,
https://doi.org/10.1002/esp.3332, 2013.
Müller, F. and Keeler, C.M.: Errors in short-term ablation measurements
on melting ice surfaces, J. Glaciol., 8, 91–105,
https://doi.org/10.3189/S0022143000020785, 1969.
Munro, D. S.: Comparison of melt energy computations and ablatometer
measurements on melting ice and snow, Arct. Alp. Res., 22, 153–162,
https://doi.org/10.2307/1551300, 1990.
Munro, D. S.: Delays of supraglacial runoff from differently defined
microbasin areas on the Peyto Glacier, Hydrol. Process., 25, 2983–2994,
https://doi.org/10.1002/hyp.8124, 2011.
Priscu, J. C.: Limnological methods for the McMurdo Long Term Ecological
Research Program, available at:
http://mcm.lternet.edu/sites/default/files/MCM_Limno_Methods_AC_23_Oct_2013.pdf
(last access: 12 November 2018), 2013.
Priscu, J. C., Priscu, L. R., Howard-Williams, C., and Vincent, W. F.: Diel
patterns of photosynthate biosynthesis by phytoplankton in permanently
ice-covered Antarctic lakes under continuous sunlight, J. Plankton. Res., 10,
333–340, https://doi.org/10.1093/plankt/10.3.333, 1988.
Priscu, J. C., Fritsen, C. H., Adams, E. E., Giovannoni, S. J., Paerl, H. W.,
McKay, C. P., Doran, P. T., Gordon, D. A., Lanoil, B. D., and Pinckney, J.
L.: Perennial Antarctic lake ice: an oasis for life in a polar desert,
Science, 280, 2095–2098, https://doi.org/10.1126/science.280.5372.2095, 1998.
Pruesse, E., Peplies, J., and Glöckner, F. O.: SINA: accurate
high-throughput multiple sequence alignment of ribosomal RNA genes,
Bioinformatics, 28, 1823–1829, https://doi.org/10.1093/bioinformatics/bts252, 2012.
Rassner, S. M., Anesio, A. M., Girdwood, S. E., Hell, K., Gokul, J. K.,
Whitworth, D. E., and Edwards, A.: Can the bacterial community of a High
Arctic glacier
surface escape viral control?, Front. Microbiol., 7, 956,
https://doi.org/10.3389/fmicb.2016.00956, 2016.
R Core Team: R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria, available at:
https://www.R-project.org/ (last access: 12 November 2018), 2017.
Reynolds, H.: Evaluation of relationships between supraglacial stream
discharge, ablation rates, and climate conditions at the Matanuska Glacier,
Alaska, Geological Society of America, Abstracts with Programs, Boulder, CO,
USA, 37, p. 84, 2005.
Riebesell, U., Schloss, I., and Smetacek, V.: Aggregation of algae released
from melting sea ice: implications for seeding and sedimentation, Polar
Biol., 11, 239–248, https://doi.org/10.1007/BF00238457, 1991.
Roslev, P. and King, G. M.: Application of a tetrazolium salt with a
water-soluble formazan as an indicator of viability in respiring bacteria,
Appl. Environ. Microbiol., 59, 2891–2896, 1993.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M.,
Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson,
C. J., and Sahl, J. W.: Introducing mothur: open-source,
platform-independent, community-supported software for describing and
comparing microbial communities, Appl. Environ. Microbiol., 75, 7537–7541,
https://doi.org/10.1128/AEM.01541-09, 2009.
Scott, D., Hood, E., and Nassry, M.: In-stream uptake and retention of C, N
and P in a supraglacial stream, Ann. Glaciol., 51, 80–86,
https://doi.org/10.3189/172756411795932065, 2010.
Smith, L. C., Chu, V. W., Yang, K., Gleason, C. J., Pitcher, L. H.,
Rennermalm, A. K., Legleiter, C. J., Behar, A. E., Overstreet, B. T.,
Moustafa, S. E., and Tedesco, M.: Efficient meltwater drainage through
supraglacial streams and rivers on the southwest Greenland ice sheet, P.
Natl. Acad. Sci. USA, 112, 1001–1006, https://doi.org/10.1073/pnas.1413024112, 2015.
Smith, L. C., Yang, K., Pitcher, L. H., Overstreet, B. T., Chu, V. W.,
Rennermalm, Å. K., Ryan, J. C., Cooper, M. G., Gleason, C. J., Tedesco,
M., and Jeyaratnam, J.: Direct measurements of meltwater runoff on the
Greenland ice sheet surface, P. Natl. Acad. Sci. USA, 114, E10622–E10631,
https://doi.org/10.1073/pnas.1707743114, 2017.
Sole, A. J., Mair, D. W. F., Nienow, P. W., Bartholomew, I. D., King, M. A.,
Burke, M. J., and Joughin, I.: Seasonal speedup of a Greenland
marine-terminating outlet glacier forced by surface melt–induced changes in
subglacial hydrology, J. Geophys. Res.-Earth, 116, F03014,
https://doi.org/10.1029/2010JF001948, 2011.
Stevens, I. T., Irvine-Fynn, T. D., Porter, P. R., Cook, J. M., Edwards, A.,
Smart, M., Moorman, B. J., Hodson, A. J., and Mitchell, A. C.: Near-surface
hydraulic conductivity of northern hemisphere glaciers, Hydrol. Process., 32,
850–865, https://doi.org/10.1002/hyp.11439, 2018.
Stibal, M., Box, J. E., Cameron, K. A., Langen, P. L., Yallop, M. L.,
Mottram, R. H., Khan, A. L., Molotch, N. P., Chrismas, N. A., Calì
Quaglia, F., and Remias, D.: Algae drive enhanced darkening of bare ice on
the Greenland ice sheet, Geophys. Res. Lett., 44, 11463–11471,
https://doi.org/10.1002/2017GL075958, 2017.
Stone, W. C., Hogan, B., Siegel, V., Lelievre, S., and Flesher, C.: Progress
towards an optically powered cryobot, Ann. Glaciol., 55, 1–13,
https://doi.org/10.3189/2014AoG65A200, 2014.
Stone, W., Hogan, B., Siegel, V., Harman, J., Flesher, C., Clark, E.,
Pradhan, O., Gasiewski, A., Howe, S., and Howe, T.: Project VALKYRIE:
Laser-powered cryobots and other methods for penetrating deep ice on Ocean
Worlds, Outer Solar System: Prospective Energy and Material Resources,
Springer, Cham, Switzerland, 47–165, https://doi.org/10.1007/978-3-319-73845-1_4,
2018.
Taylor, G. T. and Sullivan, C. W.: Vitamin B12 and cobalt cycling among
diatoms and bacteria in Antarctic sea ice microbial communities, Limnol.
Oceanogr., 53, 1862–1877, https://doi.org/10.4319/lo.2008.53.5.1862, 2008.
Tedstone, A. J., Bamber, J. L., Cook, J. M., Williamson, C. J., Fettweis, X.,
Hodson, A. J., and Tranter, M.: Dark ice dynamics of the south-west Greenland
Ice Sheet, The Cryosphere, 11, 2491–2506,
https://doi.org/10.5194/tc-11-2491-2017, 2017.
van Beusekom, A. E., O'Nell, S. R., March, R. S., Sass, L. C., and Cox, L.
H.: Re-analysis of Alaskan benchmark glacier mass-balance data using the
index method (No. 2010-5247), US Geological Survey, available at:
https://pubs.usgs.gov/sir/2010/5247/pdf/sir20105247.pdf (last access:
12 November 2018), 2010.
Yallop, M. L., Anesio, A. M., Perkins, R. G., Cook, J., Telling, J., Fagan,
D., MacFarlane, J., Stibal, M., Barker, G., Bellas, C., and Hodson, A.:
Photophysiology and albedo-changing potential of the ice algal community on
the surface of the Greenland ice sheet, ISME J., 6, 2302–2313,
https://doi.org/10.1038/ismej.2012.107, 2012.
Zawierucha, K., Kolicka, M., Takeuchi, N., and Kaczmarek, Ł.: What animals
can live in cryoconite holes? A faunal review, J. Zool., 295, 159–169,
https://doi.org/10.1111/jzo.12195, 2015.
Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen,
K.: Surface melt-induced acceleration of Greenland ice-sheet flow, Science,
297, 218–222, https://doi.org/10.1126/science.1072708, 2002.