Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
TC | Volume 12, issue 11
The Cryosphere, 12, 3653–3669, 2018
https://doi.org/10.5194/tc-12-3653-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 12, 3653–3669, 2018
https://doi.org/10.5194/tc-12-3653-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 26 Nov 2018

Research article | 26 Nov 2018

Microbial processes in the weathering crust aquifer of a temperate glacier

Brent C. Christner et al.
Related authors  
The seasonal evolution of albedo across glaciers and the surrounding landscape of the Taylor Valley, Antarctica
Anna Bergstrom, Michael Gooseff, Madeline Myers, and Peter T. Doran
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-146,https://doi.org/10.5194/tc-2019-146, 2019
Revised manuscript under review for TC
Short summary
Spatiotemporal distributions of icebergs in a temperate fjord: Columbia Fjord, Alaska
Sarah U. Neuhaus, Slawek M. Tulaczyk, and Carolyn Branecky Begeman
The Cryosphere, 13, 1785–1799, https://doi.org/10.5194/tc-13-1785-2019,https://doi.org/10.5194/tc-13-1785-2019, 2019
Short summary
A new methodology to simulate subglacial deformation of water-saturated granular material
A. Damsgaard, D. L. Egholm, J. A. Piotrowski, S. Tulaczyk, N. K. Larsen, and C. F. Brædstrup
The Cryosphere, 9, 2183–2200, https://doi.org/10.5194/tc-9-2183-2015,https://doi.org/10.5194/tc-9-2183-2015, 2015
Short summary
Cited articles  
Abbasi, S. A. and Chari, K. B: Environmental management of urban lakes: with special reference to Oussudu, Discovery Pub. House, New Delhi, India, 2008. 
Anesio, A. M., Hodson, A. J., Fritz, A., Psenner, R., and Sattler, B.: High microbial activity on glaciers: importance to the global carbon cycle, Glob. Change Biol., 15, 955–960, https://doi.org/10.1111/j.1365-2486.2008.01758.x, 2009. 
Anesio, A. M., Sattler, B., Foreman, C., Telling, J., Hodson, A., Tranter, M., and Psenner, R.: Carbon fluxes through bacterial communities on glacier surfaces, Ann. Glaciol., 51, 32–40, https://doi.org/10.3189/172756411795932092, 2010. 
Anesio, A. M., Lutz, S., Christmas, N. A. M., and Benning, L. G: The microbiome of glaciers and ice sheets, NPJ Biofilms Microbiomes, 3, 10, https://doi.org/10.1038/s41522-017-0019-0, 2017. 
Arcone, S. A., Lawson, D. E., and Delaney, A. J.: Short-pulse radar wavelet recovery and resolution of dielectric contrasts within englacial and basal ice of Matanuska Glacier, Alaska, USA, J. Glaciol., 41, 68–86, https://doi.org/10.3189/S0022143000017779, 1995. 
Publications Copernicus
Download
Short summary
Solar radiation that penetrates into the glacier heats the ice to produce nutrient-containing meltwater and provides light that fuels an ecosystem within the ice. Our analysis documents a near-surface photic zone in a glacier that functions as a liquid water oasis in the ice over half the annual cycle. Since microbial growth on glacier surfaces reduces the amount of solar radiation reflected, microbial processes at depths below the surface may also darken ice and accelerate meltwater production.
Solar radiation that penetrates into the glacier heats the ice to produce nutrient-containing...
Citation