Articles | Volume 12, issue 12
https://doi.org/10.5194/tc-12-3747-2018
https://doi.org/10.5194/tc-12-3747-2018
Research article
 | 
30 Nov 2018
Research article |  | 30 Nov 2018

The potential of sea ice leads as a predictor for summer Arctic sea ice extent

Yuanyuan Zhang, Xiao Cheng, Jiping Liu, and Fengming Hui

Related authors

Understanding the influence of ocean waves on Arctic sea ice simulation: a modeling study with an atmosphere–ocean–wave–sea ice coupled model
Chao-Yuan Yang, Jiping Liu, and Dake Chen
The Cryosphere, 18, 1215–1239, https://doi.org/10.5194/tc-18-1215-2024,https://doi.org/10.5194/tc-18-1215-2024, 2024
Short summary
The sensitivity of landfast sea ice to atmospheric forcing in single-column model simulations: a case study at Zhongshan Station, Antarctica
Fengguan Gu, Qinghua Yang, Frank Kauker, Changwei Liu, Guanghua Hao, Chao-Yuan Yang, Jiping Liu, Petra Heil, Xuewei Li, and Bo Han
The Cryosphere, 16, 1873–1887, https://doi.org/10.5194/tc-16-1873-2022,https://doi.org/10.5194/tc-16-1873-2022, 2022
Short summary
An improved regional coupled modeling system for Arctic sea ice simulation and prediction: a case study for 2018
Chao-Yuan Yang, Jiping Liu, and Dake Chen
Geosci. Model Dev., 15, 1155–1176, https://doi.org/10.5194/gmd-15-1155-2022,https://doi.org/10.5194/gmd-15-1155-2022, 2022
Short summary
A 15-year circum-Antarctic iceberg calving dataset derived from continuous satellite observations
Mengzhen Qi, Yan Liu, Jiping Liu, Xiao Cheng, Yijing Lin, Qiyang Feng, Qiang Shen, and Zhitong Yu
Earth Syst. Sci. Data, 13, 4583–4601, https://doi.org/10.5194/essd-13-4583-2021,https://doi.org/10.5194/essd-13-4583-2021, 2021
Short summary
Sensitivity of Northern Hemisphere climate to ice–ocean interface heat flux parameterizations
Xiaoxu Shi, Dirk Notz, Jiping Liu, Hu Yang, and Gerrit Lohmann
Geosci. Model Dev., 14, 4891–4908, https://doi.org/10.5194/gmd-14-4891-2021,https://doi.org/10.5194/gmd-14-4891-2021, 2021
Short summary

Related subject area

Discipline: Sea ice | Subject: Arctic (e.g. Greenland)
Melt pond fractions on Arctic summer sea ice retrieved from Sentinel-3 satellite data with a constrained physical forward model
Hannah Niehaus, Larysa Istomina, Marcel Nicolaus, Ran Tao, Aleksey Malinka, Eleonora Zege, and Gunnar Spreen
The Cryosphere, 18, 933–956, https://doi.org/10.5194/tc-18-933-2024,https://doi.org/10.5194/tc-18-933-2024, 2024
Short summary
Extent, duration and timing of the sea ice cover in Hornsund, Svalbard, from 2014–2023
Zuzanna M. Swirad, A. Malin Johansson, and Eirik Malnes
The Cryosphere, 18, 895–910, https://doi.org/10.5194/tc-18-895-2024,https://doi.org/10.5194/tc-18-895-2024, 2024
Short summary
Modeled variations in the inherent optical properties of summer Arctic ice and their effects on the radiation budget: a case based on ice cores from 2008 to 2016
Miao Yu, Peng Lu, Matti Leppäranta, Bin Cheng, Ruibo Lei, Bingrui Li, Qingkai Wang, and Zhijun Li
The Cryosphere, 18, 273–288, https://doi.org/10.5194/tc-18-273-2024,https://doi.org/10.5194/tc-18-273-2024, 2024
Short summary
Retrieval of sea ice drift in the Fram Strait based on data from Chinese satellite HaiYang (HY1-D)
Dunwang Lu, Jianqiang Liu, Lijian Shi, Tao Zeng, Bin Cheng, Suhui Wu, and Manman Wang
EGUsphere, https://doi.org/10.5194/egusphere-2023-1927,https://doi.org/10.5194/egusphere-2023-1927, 2023
Short summary
Comparing elevation and backscatter retrievals from CryoSat-2 and ICESat-2 over Arctic summer sea ice
Geoffrey J. Dawson and Jack C. Landy
The Cryosphere, 17, 4165–4178, https://doi.org/10.5194/tc-17-4165-2023,https://doi.org/10.5194/tc-17-4165-2023, 2023
Short summary

Cited articles

Andreas, E., Paulson, C., William, R., Lindsay, R., and Businger, J.: The turbulent heat flux from Arctic leads, Bound.-Lay. Meteorol., 17, 57–91, 1979. 
Blanchard-Wrigglesworth, E., Cullather, R., Wang, W., Zhang, J., and Bitz, C.: Model forecast skill and sensitivity to initial conditions in the seasonal Sea Ice Outlook, Geophys. Res. Lett., 42, 8042–8048, 2015. 
Bröhan, D. and Kaleschke, L.: A nine-year climatology of Arctic sea ice lead orientation and frequency from AMSR-E, Remote Sens., 6, 1451–1475, 2014. 
Budikova, D.: Role of Arctic sea ice in global atmospheric circulation: A review, Global Planet. Change, 68, 149–163, 2009. 
Cavalieri, D. J. and Parkinson, C. L.: Arctic sea ice variability and trends, 1979–2010, The Cryosphere, 6, 881–889, https://doi.org/10.5194/tc-6-881-2012, 2012.