Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 12, issue 1 | Copyright
The Cryosphere, 12, 385-400, 2018
https://doi.org/10.5194/tc-12-385-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 31 Jan 2018

Research article | 31 Jan 2018

Snow farming: conserving snow over the summer season

Thomas Grünewald1, Fabian Wolfsperger1, and Michael Lehning1,2 Thomas Grünewald et al.
  • 1WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260 Davos, Switzerland
  • 2Cryos, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, GRAO 402 – Station 2, 1015 Lausanne, Switzerland

Abstract. Summer storage of snow for tourism has seen an increasing interest in the last years. Covering large snow piles with materials such as sawdust enables more than two-thirds of the initial snow volume to be conserved. We present detailed mass balance measurements of two sawdust-covered snow piles obtained by terrestrial laser scanning during summer 2015. Results indicate that 74 and 63% of the snow volume remained over the summer for piles in Davos, Switzerland and Martell, Italy. If snow mass is considered instead of volume, the values increase to 83 and 72%. The difference is attributed to settling and densification of the snow. Additionally, we adapted the one-dimensional, physically based snow cover model SNOWPACK to perform simulations of the sawdust-covered snow piles. Model results and measurements agreed extremely well at the point scale. Moreover, we analysed the contribution of the different terms of the surface energy balance to snow ablation for a pile covered with a 40cm thick sawdust layer and a pile without insulation. Short-wave radiation was the dominant source of energy for both scenarios, but the moist sawdust caused strong cooling by long-wave emission and negative sensible and latent heat fluxes. This cooling effect reduces the energy available for melt by up to a factor of 12. As a result only 9% of the net short-wave energy remained available for melt. Finally, sensitivity studies of the parameters thickness of the sawdust layer, air temperature, precipitation and wind speed were performed. We show that sawdust thickness has a tremendous effect on snow loss. Higher air temperatures and wind speeds increase snow ablation but less significantly. No significant effect of additional precipitation could be found as the sawdust remained wet during the entire summer with the measured quantity of rain. Setting precipitation amounts to zero, however, strongly increased melt. Overall, the 40cm sawdust provides sufficient protection for mid-elevation (approx. 1500ma.s.l.) Alpine climates and can be managed with reasonable effort.

Publications Copernicus
Download
Short summary
Snow farming is the conservation of snow during summer. Large snow piles are covered with a sawdust insulation layer, reducing melt and guaranteeing a specific amount of available snow in autumn, independent of the weather conditions. Snow volume changes in two heaps were monitored, showing that about a third of the snow was lost. Model simulations confirmed the large effect of the insulation on energy balance and melt. The model can now be used as a tool to examine future snow-farming projects.
Snow farming is the conservation of snow during summer. Large snow piles are covered with a...
Citation
Share