Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 12, issue 2
The Cryosphere, 12, 413–431, 2018
https://doi.org/10.5194/tc-12-413-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 12, 413–431, 2018
https://doi.org/10.5194/tc-12-413-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 06 Feb 2018

Research article | 06 Feb 2018

Black carbon and mineral dust in snow cover on the Tibetan Plateau

Yulan Zhang1, Shichang Kang1,2, Michael Sprenger3, Zhiyuan Cong2, Tanguang Gao4, Chaoliu Li2, Shu Tao5, Xiaofei Li1, Xinyue Zhong1, Min Xu1, Wenjun Meng5, Bigyan Neupane1, Xiang Qin1, and Mika Sillanpää6 Yulan Zhang et al.
  • 1State key laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
  • 2CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
  • 3Institute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich, Switzerland
  • 4Key Laboratory of Western China's Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
  • 5Department of Environmental Science, Laboratory for Earth Surface Processes, Peking University, Beijing, China
  • 6Laboratory of Green Chemistry, Lappeenranta University of Technology, 50130 Mikkeli, Finland

Abstract. Snow cover plays a key role for sustaining ecology and society in mountainous regions. Light-absorbing particulates (including black carbon, organic carbon, and mineral dust) deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snow and ice. This study focused on understanding the role of black carbon and other water-insoluble light-absorbing particulates in the snow cover of the Tibetan Plateau (TP). The results found that the black carbon, organic carbon, and dust concentrations in snow cover generally ranged from 202 to 17 468 ng g−1, 491 to 13 880 ng g−1, and 22 to 846 µg g−1, respectively, with higher concentrations in the central to northern areas of the TP. Back trajectory analysis suggested that the northern TP was influenced mainly by air masses from Central Asia with some Eurasian influence, and air masses in the central and Himalayan region originated mainly from Central and South Asia. The relative biomass-burning-sourced black carbon contributions decreased from ∼ 50 % in the southern TP to ∼ 30 % in the northern TP. The relative contribution of black carbon and dust to snow albedo reduction reached approximately 37 and 15 %, respectively. The effect of black carbon and dust reduced the snow cover duration by 3.1 ± 0.1 to 4.4 ± 0.2 days. Meanwhile, the black carbon and dust had important implications for snowmelt water loss over the TP. The findings indicate that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections, particularly in the high-altitude cryosphere.

Publications Copernicus
Download
Short summary
Light-absorbing impurities deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snowpack and ice. This study focused on the black carbon and mineral dust in snow cover on the Tibetan Plateau. We discussed their concentrations, distributions, possible sources, and albedo reduction and radiative forcing. Findings indicated that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections.
Light-absorbing impurities deposited on snow can reduce surface albedo and contribute to the...
Citation