Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
TC | Volume 12, issue 2
The Cryosphere, 12, 741–757, 2018
https://doi.org/10.5194/tc-12-741-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Changing Permafrost in the Arctic and its Global Effects in...

The Cryosphere, 12, 741–757, 2018
https://doi.org/10.5194/tc-12-741-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 01 Mar 2018

Research article | 01 Mar 2018

Effects of short-term variability of meteorological variables on soil temperature in permafrost regions

Christian Beer et al.
Viewed  
Total article views: 1,274 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
798 439 37 1,274 24 42
  • HTML: 798
  • PDF: 439
  • XML: 37
  • Total: 1,274
  • BibTeX: 24
  • EndNote: 42
Views and downloads (calculated since 04 Sep 2017)
Cumulative views and downloads (calculated since 04 Sep 2017)
Viewed (geographical distribution)  
Total article views: 1,171 (including HTML, PDF, and XML) Thereof 1,154 with geography defined and 17 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 14 Nov 2019
Publications Copernicus
Download
Short summary
Idealized model experiments demonstrate that, in addition to a gradual climate change, changing daily to weekly variability of meteorological variables and extreme events will also have an impact on mean annual ground temperature in high-latitude permafrost areas. In fact, results of the land surface model experiments show that the projected increase of variability of meteorological variables leads to cooler permafrost soil in contrast to an otherwise soil warming in response to climate change.
Idealized model experiments demonstrate that, in addition to a gradual climate change, changing...
Citation