Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 12, issue 3
The Cryosphere, 12, 921–933, 2018
https://doi.org/10.5194/tc-12-921-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 12, 921–933, 2018
https://doi.org/10.5194/tc-12-921-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Mar 2018

Research article | 14 Mar 2018

Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models

Friedrich Richter et al.

Related authors

Analyzing links between simulated Laptev Sea sea ice and atmospheric conditions over adjoining landmasses using causal-effect networks
Zoé Rehder, Anne Laura Niederdrenk, Lars Kaleschke, and Lars Kutzbach
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-60,https://doi.org/10.5194/tc-2020-60, 2020
Preprint under review for TC
Short summary
The MOSAiC ice floe: sediment-laden survivor from the Siberian shelf
Thomas Krumpen, Florent Birrien, Frank Kauker, Thomas Rackow, Luisa von Albedyll, Michael Angelopoulos, H. Jakob Belter, Vadlimir Bessonov, Ellen Damm, Klaus Dethloff, Jari Haapala, Christian Haas, Stefan Hendricks, Jens Hoelemann, Mario Hoppmann, Lars Kaleschke, Michael Karcher, nikolai Kolabutin, Josefine Lenz, Anne Morgenstern, Marcel Nicolaus, Uwe Nixdorf, Tomash Petrovsky, Benjamin Rabe, Lasse Rabenstein, Markus Rex, Robert Ricker, Jan Rohde, Egor Shimanchuk, Suman Singha, Vasily Smolyanitsky, Vladimir Sokolov, Tim Stanton, Anna Timofeeva, and Michel Tsamados
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-64,https://doi.org/10.5194/tc-2020-64, 2020
Preprint under review for TC
Short summary
Effects of decimetre-scale surface roughness on L-band brightness temperature of sea ice
Maciej Miernecki, Lars Kaleschke, Nina Maaß, Stefan Hendricks, and Sten Schmidl Søbjærg
The Cryosphere, 14, 461–476, https://doi.org/10.5194/tc-14-461-2020,https://doi.org/10.5194/tc-14-461-2020, 2020
Version 1 of a sea ice module for the physics-based, detailed, multi-layer SNOWPACK model
Nander Wever, Leonard Rossmann, Nina Maaß, Katherine C. Leonard, Lars Kaleschke, Marcel Nicolaus, and Michael Lehning
Geosci. Model Dev., 13, 99–119, https://doi.org/10.5194/gmd-13-99-2020,https://doi.org/10.5194/gmd-13-99-2020, 2020
Short summary
Thin Arctic sea ice in L-band observations and an ocean reanalysis
Steffen Tietsche, Magdalena Alonso-Balmaseda, Patricia Rosnay, Hao Zuo, Xiangshan Tian-Kunze, and Lars Kaleschke
The Cryosphere, 12, 2051–2072, https://doi.org/10.5194/tc-12-2051-2018,https://doi.org/10.5194/tc-12-2051-2018, 2018
Short summary

Related subject area

Sea Ice
Variability scaling and consistency in airborne and satellite altimetry measurements of Arctic sea ice
Shiming Xu, Lu Zhou, and Bin Wang
The Cryosphere, 14, 751–767, https://doi.org/10.5194/tc-14-751-2020,https://doi.org/10.5194/tc-14-751-2020, 2020
Short summary
Sea ice volume variability and water temperature in the Greenland Sea
Valeria Selyuzhenok, Igor Bashmachnikov, Robert Ricker, Anna Vesman, and Leonid Bobylev
The Cryosphere, 14, 477–495, https://doi.org/10.5194/tc-14-477-2020,https://doi.org/10.5194/tc-14-477-2020, 2020
Short summary
Sea ice export through the Fram Strait derived from a combined model and satellite data set
Chao Min, Longjiang Mu, Qinghua Yang, Robert Ricker, Qian Shi, Bo Han, Renhao Wu, and Jiping Liu
The Cryosphere, 13, 3209–3224, https://doi.org/10.5194/tc-13-3209-2019,https://doi.org/10.5194/tc-13-3209-2019, 2019
Short summary
Estimating early-winter Antarctic sea ice thickness from deformed ice morphology
M. Jeffrey Mei, Ted Maksym, Blake Weissling, and Hanumant Singh
The Cryosphere, 13, 2915–2934, https://doi.org/10.5194/tc-13-2915-2019,https://doi.org/10.5194/tc-13-2915-2019, 2019
Short summary
On the multi-fractal scaling properties of sea ice deformation
Pierre Rampal, Véronique Dansereau, Einar Olason, Sylvain Bouillon, Timothy Williams, Anton Korosov, and Abdoulaye Samaké
The Cryosphere, 13, 2457–2474, https://doi.org/10.5194/tc-13-2457-2019,https://doi.org/10.5194/tc-13-2457-2019, 2019
Short summary

Cited articles

Berger, M., Camps, A., Font, J., Kerr, Y., Miller, J., Johannessen, J., Boutin, J., Drinkwater, M. R., Skou, N., Floury, N., Rast, M., Rebhan, H., and Attema, E.: Measuring ocean salinity with ESA's SMOS mission – Advancing the science, Esa Bulletin-European Space Agency, 113–121, 2002.
Bouillon, S., Morales Maqueda, M. A., Legat, V., and Fichefet, T.: An elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids, Ocean Modell., 27, 174–184, https://doi.org/10.1016/j.ocemod.2009.01.004, 2009.
Burke, W. J., Schmugge, T., and Paris, J. F.: Comparison of 2.8- and 21-cm microwave radiometer observations over soils with emission model calculations, J. Geophys. Res., 84, 287–294, https://doi.org/10.1029/JC084iC01p00287, 1979.
Chen, Z., Liu, J., Song, M., Yang, Q., and Xu, S.: Impacts of Assimilating Satellite Sea Ice Concentration and Thickness on Arctic Sea Ice Prediction in the NCEP Climate Forecast System, J. Climate, 30, 8429–8446, https://doi.org/10.1175/JCLI-D-17-0093.1, 2017.
Day, J., Hawkins, E., and Tietsche, S.: Will Arctic sea ice thickness initialization improve seasonal forecast skill?, Geophys. Res. Lett., 41, 7566–7575, https://doi.org/10.1002/2014GL061694, 2014.
Publications Copernicus
Download
Short summary
L-band (1.4 GHz) brightness temperatures from ESA's Soil Moisture and Ocean Salinity SMOS mission have been used to derive thin sea ice thickness. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems reducing the data latency and providing a more consistent first guess. We studied the forward (observation) operator that translates geophysical sea ice parameters from the ECMWF Ocean ReAnalysis Pilot 5 (ORAP5) into brightness temperatures.
L-band (1.4 GHz) brightness temperatures from ESA's Soil Moisture and Ocean Salinity SMOS...
Citation