Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 12, issue 3 | Copyright
The Cryosphere, 12, 921-933, 2018
https://doi.org/10.5194/tc-12-921-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Mar 2018

Research article | 14 Mar 2018

Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models

Friedrich Richter et al.
Related authors
Thin Arctic sea ice in L-band observations and an ocean reanalysis
Steffen Tietsche, Magdalena Alonso-Balmaseda, Patricia Rosnay, Hao Zuo, Xiangshan Tian-Kunze, and Lars Kaleschke
The Cryosphere, 12, 2051-2072, https://doi.org/10.5194/tc-12-2051-2018,https://doi.org/10.5194/tc-12-2051-2018, 2018
SMOS near-real-time soil moisture product: processor overview and first validation results
Nemesio J. Rodríguez-Fernández, Joaquin Muñoz Sabater, Philippe Richaume, Patricia de Rosnay, Yann H. Kerr, Clement Albergel, Matthias Drusch, and Susanne Mecklenburg
Hydrol. Earth Syst. Sci., 21, 5201-5216, https://doi.org/10.5194/hess-21-5201-2017,https://doi.org/10.5194/hess-21-5201-2017, 2017
A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data
Robert Ricker, Stefan Hendricks, Lars Kaleschke, Xiangshan Tian-Kunze, Jennifer King, and Christian Haas
The Cryosphere, 11, 1607-1623, https://doi.org/10.5194/tc-11-1607-2017,https://doi.org/10.5194/tc-11-1607-2017, 2017
Benefits of assimilating thin sea ice thickness from SMOS into the TOPAZ system
Jiping Xie, François Counillon, Laurent Bertino, Xiangshan Tian-Kunze, and Lars Kaleschke
The Cryosphere, 10, 2745-2761, https://doi.org/10.5194/tc-10-2745-2016,https://doi.org/10.5194/tc-10-2745-2016, 2016
An exemplary case of a bromine explosion event linked to cyclone development in the Arctic
A.-M. Blechschmidt, A. Richter, J. P. Burrows, L. Kaleschke, K. Strong, N. Theys, M. Weber, X. Zhao, and A. Zien
Atmos. Chem. Phys., 16, 1773-1788, https://doi.org/10.5194/acp-16-1773-2016,https://doi.org/10.5194/acp-16-1773-2016, 2016
Related subject area
Sea Ice
Reflective properties of melt ponds on sea ice
Aleksey Malinka, Eleonora Zege, Larysa Istomina, Georg Heygster, Gunnar Spreen, Donald Perovich, and Chris Polashenski
The Cryosphere, 12, 1921-1937, https://doi.org/10.5194/tc-12-1921-2018,https://doi.org/10.5194/tc-12-1921-2018, 2018
Improving Met Office seasonal forecasts of Arctic sea ice using assimilation of CryoSat-2 thickness
Edward W. Blockley and K. Andrew Peterson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-62,https://doi.org/10.5194/tc-2018-62, 2018
Revised manuscript accepted for TC
The color of melt ponds on Arctic sea ice
Peng Lu, Matti Leppäranta, Bin Cheng, Zhijun Li, Larysa Istomina, and Georg Heygster
The Cryosphere, 12, 1331-1345, https://doi.org/10.5194/tc-12-1331-2018,https://doi.org/10.5194/tc-12-1331-2018, 2018
On the retrieval of sea ice thickness and snow depth using concurrent laser altimetry and L-band remote sensing data
Lu Zhou, Shiming Xu, Jiping Liu, and Bin Wang
The Cryosphere, 12, 993-1012, https://doi.org/10.5194/tc-12-993-2018,https://doi.org/10.5194/tc-12-993-2018, 2018
A network model for characterizing brine channels in sea ice
Ross M. Lieblappen, Deip D. Kumar, Scott D. Pauls, and Rachel W. Obbard
The Cryosphere, 12, 1013-1026, https://doi.org/10.5194/tc-12-1013-2018,https://doi.org/10.5194/tc-12-1013-2018, 2018
Cited articles
Berger, M., Camps, A., Font, J., Kerr, Y., Miller, J., Johannessen, J., Boutin, J., Drinkwater, M. R., Skou, N., Floury, N., Rast, M., Rebhan, H., and Attema, E.: Measuring ocean salinity with ESA's SMOS mission – Advancing the science, Esa Bulletin-European Space Agency, 113–121, 2002.
Bouillon, S., Morales Maqueda, M. A., Legat, V., and Fichefet, T.: An elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids, Ocean Modell., 27, 174–184, https://doi.org/10.1016/j.ocemod.2009.01.004, 2009.
Burke, W. J., Schmugge, T., and Paris, J. F.: Comparison of 2.8- and 21-cm microwave radiometer observations over soils with emission model calculations, J. Geophys. Res., 84, 287–294, https://doi.org/10.1029/JC084iC01p00287, 1979.
Chen, Z., Liu, J., Song, M., Yang, Q., and Xu, S.: Impacts of Assimilating Satellite Sea Ice Concentration and Thickness on Arctic Sea Ice Prediction in the NCEP Climate Forecast System, J. Climate, 30, 8429–8446, https://doi.org/10.1175/JCLI-D-17-0093.1, 2017.
Day, J., Hawkins, E., and Tietsche, S.: Will Arctic sea ice thickness initialization improve seasonal forecast skill?, Geophys. Res. Lett., 41, 7566–7575, https://doi.org/10.1002/2014GL061694, 2014.
Publications Copernicus
Download
Short summary
L-band (1.4 GHz) brightness temperatures from ESA's Soil Moisture and Ocean Salinity SMOS mission have been used to derive thin sea ice thickness. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems reducing the data latency and providing a more consistent first guess. We studied the forward (observation) operator that translates geophysical sea ice parameters from the ECMWF Ocean ReAnalysis Pilot 5 (ORAP5) into brightness temperatures.
L-band (1.4 GHz) brightness temperatures from ESA's Soil Moisture and Ocean Salinity SMOS...
Citation
Share