Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
TC | Volume 13, issue 5
The Cryosphere, 13, 1529-1546, 2019
https://doi.org/10.5194/tc-13-1529-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 13, 1529-1546, 2019
https://doi.org/10.5194/tc-13-1529-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 28 May 2019

Research article | 28 May 2019

An efficient surface energy–mass balance model for snow and ice

Andreas Born et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Andreas Born on behalf of the Authors (13 Mar 2019)  Author's response    Manuscript
ED: Publish subject to minor revisions (review by editor) (22 Mar 2019) by Alexander Robinson
AR by Andreas Born on behalf of the Authors (30 Apr 2019)  Author's response    Manuscript
ED: Publish as is (10 May 2019) by Alexander Robinson
Publications Copernicus
Download
Short summary
We present a new numerical model to simulate the surface energy and mass balance of snow and ice. While similar models exist and cover a wide range of complexity from empirical models to those that simulate the microscopic structure of individual snow grains, we aim to strike a balance between physical completeness and numerical efficiency. This new model will enable physically accurate simulations over timescales of hundreds of millennia, a key requirement of investigating ice age cycles.
We present a new numerical model to simulate the surface energy and mass balance of snow and...
Citation