Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
TC | Volume 13, issue 10
The Cryosphere, 13, 2713–2732, 2019
https://doi.org/10.5194/tc-13-2713-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 13, 2713–2732, 2019
https://doi.org/10.5194/tc-13-2713-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 16 Oct 2019

Research article | 16 Oct 2019

Measurement of specific surface area of fresh solid precipitation particles in heavy snowfall regions of Japan

Satoru Yamaguchi et al.

Related authors

NHM–SMAP: spatially and temporally high-resolution nonhydrostatic atmospheric model coupled with detailed snow process model for Greenland Ice Sheet
Masashi Niwano, Teruo Aoki, Akihiro Hashimoto, Sumito Matoba, Satoru Yamaguchi, Tomonori Tanikawa, Koji Fujita, Akane Tsushima, Yoshinori Iizuka, Rigen Shimada, and Masahiro Hori
The Cryosphere, 12, 635–655, https://doi.org/10.5194/tc-12-635-2018,https://doi.org/10.5194/tc-12-635-2018, 2018
Short summary
Liquid water infiltration into a layered snowpack: evaluation of a 3-D water transport model with laboratory experiments
Hiroyuki Hirashima, Francesco Avanzi, and Satoru Yamaguchi
Hydrol. Earth Syst. Sci., 21, 5503–5515, https://doi.org/10.5194/hess-21-5503-2017,https://doi.org/10.5194/hess-21-5503-2017, 2017
Short summary
Anomalous winter-snow-amplified earthquake-induced disaster of the 2015 Langtang avalanche in Nepal
Koji Fujita, Hiroshi Inoue, Takeki Izumi, Satoru Yamaguchi, Ayako Sadakane, Sojiro Sunako, Kouichi Nishimura, Walter W. Immerzeel, Joseph M. Shea, Rijan B. Kayastha, Takanobu Sawagaki, David F. Breashears, Hiroshi Yagi, and Akiko Sakai
Nat. Hazards Earth Syst. Sci., 17, 749–764, https://doi.org/10.5194/nhess-17-749-2017,https://doi.org/10.5194/nhess-17-749-2017, 2017
Short summary
Relationships between snowfall density and solid hydrometeors, based on measured size and fall speed, for snowpack modeling applications
Masaaki Ishizaka, Hiroki Motoyoshi, Satoru Yamaguchi, Sento Nakai, Toru Shiina, and Ken-ichiro Muramoto
The Cryosphere, 10, 2831–2845, https://doi.org/10.5194/tc-10-2831-2016,https://doi.org/10.5194/tc-10-2831-2016, 2016
Short summary
Observations of capillary barriers and preferential flow in layered snow during cold laboratory experiments
Francesco Avanzi, Hiroyuki Hirashima, Satoru Yamaguchi, Takafumi Katsushima, and Carlo De Michele
The Cryosphere, 10, 2013–2026, https://doi.org/10.5194/tc-10-2013-2016,https://doi.org/10.5194/tc-10-2013-2016, 2016
Short summary

Related subject area

Discipline: Snow | Subject: Field Studies
The evolution of snow bedforms in the Colorado Front Range and the processes that shape them
Kelly Kochanski, Robert S. Anderson, and Gregory E. Tucker
The Cryosphere, 13, 1267–1281, https://doi.org/10.5194/tc-13-1267-2019,https://doi.org/10.5194/tc-13-1267-2019, 2019
Short summary
Estimating the snow water equivalent on a glacierized high elevation site (Forni Glacier, Italy)
Antonella Senese, Maurizio Maugeri, Eraldo Meraldi, Gian Pietro Verza, Roberto Sergio Azzoni, Chiara Compostella, and Guglielmina Diolaiuti
The Cryosphere, 12, 1293–1306, https://doi.org/10.5194/tc-12-1293-2018,https://doi.org/10.5194/tc-12-1293-2018, 2018
Short summary
Snowmobile impacts on snowpack physical and mechanical properties
Steven R. Fassnacht, Jared T. Heath, Niah B. H. Venable, and Kelly J. Elder
The Cryosphere, 12, 1121–1135, https://doi.org/10.5194/tc-12-1121-2018,https://doi.org/10.5194/tc-12-1121-2018, 2018
Short summary

Cited articles

Akitaya, E. and Nakamura, K.: Formation of weak layers caused by snow crystals fallen in worm front, Snow and Ice in Hokkaido (a bulletin of the Hokkaido branch, Japanese Society of Snow and Ice), 32, 10–13, 2013 (in Japanese). 
Akitaya, E. and Shimuzu, H.: Observations of weak layers in a snow cover. Low Temperature Science, Ser. A, Physical sciences, 46, 67–75, http://hdl.handle.net/2115/18548 (last access: 20 April 2019), 1988 (in Japanese with English abstract). 
Aoki, T., Kuchiki, K., Niwano, M., Kodama, Y., Hosaka, M., and Tanaka, T.: Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models, J. Geophys. Res., 116, D11114, https://doi.org/10.1029/2010JD015507, 2011. 
Arakawa, H., Izumi, K., Kawashima, K., and Kawamura, T: Study on quantitative classification of seasonal snow using specific surface area and intrinsic permeability, Cold. Reg. Sci. Technol., 59, 163–168, https://doi.org/10.1016/j.coldregions.2009.07.004, 2009. 
Araki, K.: Snowfall characteristics of heavy snowfall events associated with cyclones causing surface avalanche in Nasu, Japan, Seppyo, 80, 131–147, 2018 (in Japanese with English abstract). 
Publications Copernicus
Download
Short summary
The specific surface area (SSA) of solid precipitation particles (PPs) includes detailed information of PP. This work is based on field measurement of SSA of PPs in Nagaoka, the city with the heaviest snowfall in Japan. The values of SSA strongly depend on wind speed (WS) and wet-bulb temperature (Tw) on the ground. An equation to empirically estimate the SSA of fresh PPs with WS and Tw was established and the equation successfully reproduced the fluctuation of SSA in Nagaoka.
The specific surface area (SSA) of solid precipitation particles (PPs) includes detailed...
Citation