Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
TC | Volume 13, issue 11
The Cryosphere, 13, 2901–2914, 2019
https://doi.org/10.5194/tc-13-2901-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 13, 2901–2914, 2019
https://doi.org/10.5194/tc-13-2901-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 08 Nov 2019

Research article | 08 Nov 2019

Wave energy attenuation in fields of colliding ice floes – Part 2: A laboratory case study

Agnieszka Herman et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (17 Sep 2019) by Lars Kaleschke
AR by Agnieszka Herman on behalf of the Authors (27 Sep 2019)  Author's response    Manuscript
ED: Publish as is (31 Oct 2019) by Lars Kaleschke
Publications Copernicus
Download
Short summary
Sea ice interactions with waves are extensively studied in recent years, but mechanisms leading to wave energy attenuation in sea ice remain poorly understood. One of the reasons limiting progress in modelling is a lack of observational data for model validation. The paper presents an analysis of laboratory observations of waves propagating in colliding ice floes. We show that wave attenuation is sensitive to floe size and wave period. A numerical model is calibrated to reproduce this behaviour.
Sea ice interactions with waves are extensively studied in recent years, but mechanisms leading...
Citation