Articles | Volume 13, issue 11
https://doi.org/10.5194/tc-13-3007-2019
https://doi.org/10.5194/tc-13-3007-2019
Research article
 | 
18 Nov 2019
Research article |  | 18 Nov 2019

Decadal changes in the leading patterns of sea level pressure in the Arctic and their impacts on the sea ice variability in boreal summer

Nakbin Choi, Kyu-Myong Kim, Young-Kwon Lim, and Myong-In Lee

Related authors

Assimilation of snow water equivalent from AMSR2 and IMS satellite data utilizing the local ensemble transform Kalman filter
Joonlee Lee, Myong-In Lee, Sunlae Tak, Eunkyo Seo, and Yong-Keun Lee
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-221,https://doi.org/10.5194/gmd-2023-221, 2023
Revised manuscript under review for GMD
Short summary
An overview of cloud-radiation denial experiments for the Energy Exascale Earth System Model version 1
Bryce E. Harrop, Jian Lu, L. Ruby Leung, William K. M. Lau, Kyu-Myong Kim, Brian Medeiros, Brian J. Soden, Gabriel A. Vecchi, Bosong Zhang, and Balwinder Singh
EGUsphere, https://doi.org/10.5194/egusphere-2023-1555,https://doi.org/10.5194/egusphere-2023-1555, 2023
Short summary
Detection of deterministic and probabilistic convection initiation using Himawari-8 Advanced Himawari Imager data
Sanggyun Lee, Hyangsun Han, Jungho Im, Eunna Jang, and Myong-In Lee
Atmos. Meas. Tech., 10, 1859–1874, https://doi.org/10.5194/amt-10-1859-2017,https://doi.org/10.5194/amt-10-1859-2017, 2017
Short summary
Improvement of Soil Respiration Parameterization in a Dynamic Global Vegetation Model and Its Impact on the Simulation of Terrestrial Carbon Fluxes
Dongmin Kim, Myong-In Lee, and Eunkyo Seo
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-549,https://doi.org/10.5194/bg-2016-549, 2017
Preprint retracted
Short summary
Intercomparison of Terrestrial Carbon Fluxes and Carbon Use Efficiency Simulated by CMIP5 Earth System Models
Dongmin Kim, Myong-In Lee, Su-Jong Jeong, Jungho Im, Dong Hyun Cha, and Sanggyun Lee
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-536,https://doi.org/10.5194/bg-2016-536, 2016
Manuscript not accepted for further review
Short summary

Related subject area

Discipline: Sea ice | Subject: Atmospheric Interactions
Effects of Arctic sea-ice concentration on turbulent surface fluxes in four atmospheric reanalyses
Tereza Uhlíková, Timo Vihma, Alexey Yu Karpechko, and Petteri Uotila
The Cryosphere, 18, 957–976, https://doi.org/10.5194/tc-18-957-2024,https://doi.org/10.5194/tc-18-957-2024, 2024
Short summary
Attributing near-surface atmospheric trends in the Fram Strait region to regional sea ice conditions
Amelie U. Schmitt and Christof Lüpkes
The Cryosphere, 17, 3115–3136, https://doi.org/10.5194/tc-17-3115-2023,https://doi.org/10.5194/tc-17-3115-2023, 2023
Short summary
Estimating a mean transport velocity in the marginal ice zone using ice–ocean prediction systems
Graig Sutherland, Victor de Aguiar, Lars-Robert Hole, Jean Rabault, Mohammed Dabboor, and Øyvind Breivik
The Cryosphere, 16, 2103–2114, https://doi.org/10.5194/tc-16-2103-2022,https://doi.org/10.5194/tc-16-2103-2022, 2022
Short summary
Contributions of advection and melting processes to the decline in sea ice in the Pacific sector of the Arctic Ocean
Haibo Bi, Qinghua Yang, Xi Liang, Liang Zhang, Yunhe Wang, Yu Liang, and Haijun Huang
The Cryosphere, 13, 1423–1439, https://doi.org/10.5194/tc-13-1423-2019,https://doi.org/10.5194/tc-13-1423-2019, 2019
Short summary
Potential faster Arctic sea ice retreat triggered by snowflakes' greenhouse effect
Jui-Lin Frank Li, Mark Richardson, Wei-Liang Lee, Eric Fetzer, Graeme Stephens, Jonathan Jiang, Yulan Hong, Yi-Hui Wang, Jia-Yuh Yu, and Yinghui Liu
The Cryosphere, 13, 969–980, https://doi.org/10.5194/tc-13-969-2019,https://doi.org/10.5194/tc-13-969-2019, 2019
Short summary

Cited articles

Ballinger, T. J. and Rogers, J. C.: Climatic and atmospheric teleconnection indices and western Arctic sea ice variability, Phys. Geogr., 35, 459–477, https://doi.org/10.1080/02723646.2014.949338, 2014. 
Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., and Bladé, I.: The effective number of spatial degrees of freedom of a time-varying field, J. Climate, 12, 1990–2009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2, 1999. 
Carmack, E., Polyakov, I., Padman, L., Fer, I., Hunke, E., Hutchings, J., Jackson, J., Kelley, D., Kwok, R., Layton, C., Melling, H., Perovich, D., Persson, O., Ruddick, B., Timmermans, M., Toole, J., Ross, T., Vavrus, S., and Winsor, P.: Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic, B. Am. Meteorol. Soc., 96, 2079–2105, https://doi.org/10.1175/BAMS-D-13-00177.1, 2015. 
Chen, H. W., Zhang, Q., Körnich, H., and Chen, D.: A robust mode of climate variability in the Arctic: The Barents Oscillation, Geophys. Res. Lett., 40, 2856–2861, https://doi.org/10.1002/grl.50551, 2013. 
Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L.: Accelerated decline in the Arctic sea ice cover, Geophys. Res. Lett., 35, L01703, https://doi.org/10.1029/2007GL031972, 2008. 
Download
Short summary
This study compares the decadal changes of the leading patterns of sea level pressure between the early (1982–1997) and the recent (1998–2017) periods as well as their influences on the Arctic sea ice extent (SIE) variability. The correlation between the Arctic Dipole (AD) mode and SIE becomes significant in the recent period, not in the past, due to its spatial pattern change. This tends to enhance meridional wind over the Fram Strait and sea ice discharge to the Atlantic.