Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
TC | Volume 13, issue 11
The Cryosphere, 13, 3045–3059, 2019
https://doi.org/10.5194/tc-13-3045-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 13, 3045–3059, 2019
https://doi.org/10.5194/tc-13-3045-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 19 Nov 2019

Research article | 19 Nov 2019

Effect of snow microstructure variability on Ku-band radar snow water equivalent retrievals

Nick Rutter et al.

Related authors

Simulated single-layer forest canopies delay Northern Hemisphere snowmelt
Markus Todt, Nick Rutter, Christopher G. Fletcher, and Leanne M. Wake
The Cryosphere, 13, 3077–3091, https://doi.org/10.5194/tc-13-3077-2019,https://doi.org/10.5194/tc-13-3077-2019, 2019
Short summary
Multi-physics ensemble snow modelling in the western Himalaya
David M. W. Pritchard, Nathan Forsythe, Greg O'Donnell, Hayley J. Fowler, and Nick Rutter
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-187,https://doi.org/10.5194/tc-2019-187, 2019
Revised manuscript accepted for TC
Short summary
Microstructure representation of snow in coupled snowpack and microwave emission models
Melody Sandells, Richard Essery, Nick Rutter, Leanne Wake, Leena Leppänen, and Juha Lemmetyinen
The Cryosphere, 11, 229–246, https://doi.org/10.5194/tc-11-229-2017,https://doi.org/10.5194/tc-11-229-2017, 2017
Short summary
Brief communication: Improved measurement of ice layer density in seasonal snowpacks
Tom Watts, Nick Rutter, Peter Toose, Chris Derksen, Melody Sandells, and John Woodward
The Cryosphere, 10, 2069–2074, https://doi.org/10.5194/tc-10-2069-2016,https://doi.org/10.5194/tc-10-2069-2016, 2016
Short summary
Intercomparison of snow density measurements: bias, precision, and vertical resolution
Martin Proksch, Nick Rutter, Charles Fierz, and Martin Schneebeli
The Cryosphere, 10, 371–384, https://doi.org/10.5194/tc-10-371-2016,https://doi.org/10.5194/tc-10-371-2016, 2016
Short summary

Related subject area

Discipline: Snow | Subject: Remote Sensing
Use of Sentinel-1 radar observations to evaluate snowmelt dynamics in alpine regions
Carlo Marin, Giacomo Bertoldi, Valentina Premier, Mattia Callegari, Christian Brida, Kerstin Hürkamp, Jochen Tschiersch, Marc Zebisch, and Claudia Notarnicola
The Cryosphere, 14, 935–956, https://doi.org/10.5194/tc-14-935-2020,https://doi.org/10.5194/tc-14-935-2020, 2020
Short summary
Comparison of modeled snow properties in Afghanistan, Pakistan, and Tajikistan
Edward H. Bair, Karl Rittger, Jawairia A. Ahmad, and Doug Chabot
The Cryosphere, 14, 331–347, https://doi.org/10.5194/tc-14-331-2020,https://doi.org/10.5194/tc-14-331-2020, 2020
Short summary
Regional influence of ocean–atmosphere teleconnections on the timing and duration of MODIS-derived snow cover in British Columbia, Canada
Alexandre R. Bevington, Hunter E. Gleason, Vanessa N. Foord, William C. Floyd, and Hardy P. Griesbauer
The Cryosphere, 13, 2693–2712, https://doi.org/10.5194/tc-13-2693-2019,https://doi.org/10.5194/tc-13-2693-2019, 2019
Short summary
Estimating snow depth on Arctic sea ice using satellite microwave radiometry and a neural network
Anne Braakmann-Folgmann and Craig Donlon
The Cryosphere, 13, 2421–2438, https://doi.org/10.5194/tc-13-2421-2019,https://doi.org/10.5194/tc-13-2421-2019, 2019
Short summary
Suitability analysis of ski areas in China: an integrated study based on natural and socioeconomic conditions
Jie Deng, Tao Che, Cunde Xiao, Shijin Wang, Liyun Dai, and Akynbekkyzy Meerzhan
The Cryosphere, 13, 2149–2167, https://doi.org/10.5194/tc-13-2149-2019,https://doi.org/10.5194/tc-13-2149-2019, 2019
Short summary

Cited articles

Anderson, E. A.: A point energy and mass balance model of a snow cover, U.S. Dept. of Commerce, Silver Spring, MD, USANOAA Technical Report 19, 150, 1976. 
Barrere, M., Domine, F., Decharme, B., Morin, S., Vionnet, V., and Lafaysse, M.: Evaluating the performance of coupled snow-soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site, Geosci. Model Dev., 10, 3461–3479, https://doi.org/10.5194/gmd-10-3461-2017, 2017. 
Benson, C. S. and Sturm, M.: Structure and wind transport of seasonal snow on the Arctic slope of Alaska, Ann. Glaciol., 18, 261–267, 1993. 
Clark, M. P., Hendrikx, J., Slater, A. G., Kavetski, D., Anderson, B., Cullen, N. J., Kerr, T., Hreinsson, E. O., and Woods, R. A.: Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review, Water Resour. Res., 47, W07539, https://doi.org/10.1029/2011wr010745, 2011. 
Cline, D., Yueh, S., Chapman, B., Stankov, B., Gasiewski, A., Masters, D., Elder, K., Kelly, R., Painter, T. H., Miller, S., Katzberg, S., and Mahrt, L.: NASA Cold Land Processes Experiment (CLPX 2002/03): Airborne Remote Sensing, J. Hydrometeorol., 10, 338–346, https://doi.org/10.1175/2008jhm883.1, 2009. 
Publications Copernicus
Download
Short summary
Impact of natural variability in Arctic tundra snow microstructural characteristics on the capacity to estimate snow water equivalent (SWE) from Ku-band radar was assessed. Median values of metrics quantifying snow microstructure adequately characterise differences between snowpack layers. Optimal estimates of SWE required microstructural values slightly less than the measured median but tolerated natural variability for accurate estimation of SWE in shallow snowpacks.
Impact of natural variability in Arctic tundra snow microstructural characteristics on the...
Citation