Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
TC | Volume 13, issue 1
The Cryosphere, 13, 49-78, 2019
https://doi.org/10.5194/tc-13-49-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 13, 49-78, 2019
https://doi.org/10.5194/tc-13-49-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 09 Jan 2019

Research article | 09 Jan 2019

Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records

Thomas Lavergne et al.
Related authors  
Satellite Passive Microwave Sea-Ice Concentration Data Set Intercomparison: Closed Ice and Ship-Based Observations
Stefan Kern, Thomas Lavergne, Dirk Notz, Leif Toudal Pedersen, Rasmus Tage Tonboe, Roberto Saldo, and Atle MacDonald Soerensen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-120,https://doi.org/10.5194/tc-2019-120, 2019
Manuscript under review for TC
Short summary
Estimating the snow depth, the snow–ice interface temperature, and the effective temperature of Arctic sea ice using Advanced Microwave Scanning Radiometer 2 and ice mass balance buoy data
Lise Kilic, Rasmus Tage Tonboe, Catherine Prigent, and Georg Heygster
The Cryosphere, 13, 1283-1296, https://doi.org/10.5194/tc-13-1283-2019,https://doi.org/10.5194/tc-13-1283-2019, 2019
Short summary
In situ observed relationships between snow and ice surface skin temperatures and 2 m air temperatures in the Arctic
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus Tonboe, Gorm Dybkjær, and Emy Alerskans
The Cryosphere, 13, 1005-1024, https://doi.org/10.5194/tc-13-1005-2019,https://doi.org/10.5194/tc-13-1005-2019, 2019
Short summary
Combined SMAP–SMOS thin sea ice thickness retrieval
Cătălin Paţilea, Georg Heygster, Marcus Huntemann, and Gunnar Spreen
The Cryosphere, 13, 675-691, https://doi.org/10.5194/tc-13-675-2019,https://doi.org/10.5194/tc-13-675-2019, 2019
Short summary
Towards an advanced observation system for the marine Arctic in the framework of the Pan-Eurasian Experiment (PEEX)
Timo Vihma, Petteri Uotila, Stein Sandven, Dmitry Pozdnyakov, Alexander Makshtas, Alexander Pelyasov, Roberta Pirazzini, Finn Danielsen, Sergey Chalov, Hanna K. Lappalainen, Vladimir Ivanov, Ivan Frolov, Anna Albin, Bin Cheng, Sergey Dobrolyubov, Viktor Arkhipkin, Stanislav Myslenkov, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 1941-1970, https://doi.org/10.5194/acp-19-1941-2019,https://doi.org/10.5194/acp-19-1941-2019, 2019
Short summary
Related subject area  
Discipline: Sea ice | Subject: Remote Sensing
Estimation of turbulent heat flux over leads using satellite thermal images
Meng Qu, Xiaoping Pang, Xi Zhao, Jinlun Zhang, Qing Ji, and Pei Fan
The Cryosphere, 13, 1565-1582, https://doi.org/10.5194/tc-13-1565-2019,https://doi.org/10.5194/tc-13-1565-2019, 2019
Short summary
Snow-driven uncertainty in CryoSat-2-derived Antarctic sea ice thickness – insights from McMurdo Sound
Daniel Price, Iman Soltanzadeh, Wolfgang Rack, and Ethan Dale
The Cryosphere, 13, 1409-1422, https://doi.org/10.5194/tc-13-1409-2019,https://doi.org/10.5194/tc-13-1409-2019, 2019
Short summary
Instantaneous sea ice drift speed from TanDEM-X interferometry
Dyre Oliver Dammann, Leif E. B. Eriksson, Joshua M. Jones, Andrew R. Mahoney, Roland Romeiser, Franz J. Meyer, Hajo Eicken, and Yasushi Fukamachi
The Cryosphere, 13, 1395-1408, https://doi.org/10.5194/tc-13-1395-2019,https://doi.org/10.5194/tc-13-1395-2019, 2019
Short summary
Estimating the snow depth, the snow–ice interface temperature, and the effective temperature of Arctic sea ice using Advanced Microwave Scanning Radiometer 2 and ice mass balance buoy data
Lise Kilic, Rasmus Tage Tonboe, Catherine Prigent, and Georg Heygster
The Cryosphere, 13, 1283-1296, https://doi.org/10.5194/tc-13-1283-2019,https://doi.org/10.5194/tc-13-1283-2019, 2019
Short summary
Assessment of contemporary satellite sea ice thickness products for Arctic sea ice
Heidi Sallila, Sinéad Louise Farrell, Joshua McCurry, and Eero Rinne
The Cryosphere, 13, 1187-1213, https://doi.org/10.5194/tc-13-1187-2019,https://doi.org/10.5194/tc-13-1187-2019, 2019
Short summary
Cited articles  
Andersen, S., Tonboe, R., Kern, S., and Schyberg, H.: Improved retrieval of sea ice total concentration from spaceborne passive microwave observations using Numerical Weather Prediction model fields: An intercomparison of nine algorithms, Remote Sens. Environ., 104, 374–392, 2006. 
Andersen, S., Toudal Pedersen, L., Heygster, G., Tonboe, R., and Kaleschke, L.: Intercomparison of passive microwave sea ice concentration retrievals over the high concentration Arctic sea ice, J. Geophys. Res., 112, C08004, https://doi.org/10.1029/2006JC003543, 2007. 
Ashcroft, P. and Wentz, F. J.: AMSR-E/Aqua L2A Global Swath Spatially-Resampled Brightness Temperatures, Version 3 [2002–2010], NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA, https://doi.org/10.5067/AMSR-E/AE_L2A.003, 2013. 
Bellprat, O., Massonnet, F., Siegert, S., Prodhomme, C., Macias-Gómez, D., Guemas, V., and Doblas-Reyes, F.: Uncertainty propagation in observational references to climate model scales, Remote Sens. Environ., 203, 101–108, https://doi.org/10.1016/j.rse.2017.06.034, 2017. 
Brodzik, M. J., Billingsley, B., Haran, T., Raup, B., and Savoie, M. H.: EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets, ISPRS Int. Geo.-Inf., 1, 32–45, https://doi.org/10.3390/ijgi1010032, 2012. 
Publications Copernicus
Download
Short summary
The loss of polar sea ice is an iconic indicator of Earth’s climate change. Many satellite-based algorithms and resulting data exist but they differ widely in specific sea-ice conditions. This spread hinders a robust estimate of the future evolution of sea-ice cover. In this study, we document three new climate data records of sea-ice concentration generated using satellite data available over the last 40 years. We introduce the novel algorithms, the data records, and their uncertainties.
The loss of polar sea ice is an iconic indicator of Earth’s climate change. Many...
Citation