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Abstract. We introduce the OSI-450, the SICCI-25km and
the SICCI-50km climate data records of gridded global sea-
ice concentration. These three records are derived from pas-
sive microwave satellite data and offer three distinct advan-
tages compared to existing records: first, all three records
provide quantitative information on uncertainty and possi-
bly applied filtering at every grid point and every time step.
Second, they are based on dynamic tie points, which capture
the time evolution of surface characteristics of the ice cover
and accommodate potential calibration differences between
satellite missions. Third, they are produced in the context of
sustained services offering committed extension, documen-
tation, traceability, and user support. The three records differ
in the underlying satellite data (SMMR & SSM/I & SSMIS
or AMSR-E & AMSR2), in the imaging frequency channels
(37 GHz and either 6 or 19 GHz), in their horizontal resolu-
tion (25 or 50 km), and in the time period they cover. We in-
troduce the underlying algorithms and provide an evaluation.
We find that all three records compare well with indepen-
dent estimates of sea-ice concentration both in regions with
very high sea-ice concentration and in regions with very low
sea-ice concentration. We hence trust that these records will
prove helpful for a better understanding of the evolution of
the Earth’s sea-ice cover.

1 Introduction

Satellite-retrieved records of Arctic and Antarctic sea-ice
concentration differ widely in their estimates of a specific
sea-ice concentration on a given day in a given region (e.g.
Ivanova et al., 2015; Comiso et al., 2017a). Integrated over
the entire Arctic, these differences accumulate up to a 20 %
uncertainty in the long-term trends of sea-ice extent and sea-
ice area (Comiso et al., 2017b), which hinders a robust evalu-
ation and bias correction of climate models, and in particular
hinders a robust estimate of the future evolution of the Arc-
tic sea-ice cover. For example, Niederdrenk and Notz (2018)
found that observational uncertainty is the main source of
uncertainty for estimating at which level of global warming
the Arctic will lose its summer sea-ice cover. This is because
both the bias correction of large-scale climate models and
the extrapolation of observed relationships between forcing
and sea-ice coverage can only be carried out robustly if ob-
servational uncertainty is sufficiently small. In this contribu-
tion, we introduce three new climate data records of gridded
global sea-ice concentration that address some of the short-
comings of existing records, and in particular provide addi-
tional information that allows users to judge the robustness
of the sea-ice concentration estimates.
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Our focus on sea-ice concentration is to a substantial de-
gree driven by the fact that information on sea-ice concen-
tration is key to the vast majority of approaches for under-
standing the changing sea-ice cover of our planet. This im-
portance of sea-ice concentration derives both from the avail-
ability of a long, continuous record of the underlying passive-
microwave data and from the central importance of sea-ice
concentration for many physical processes connected to the
sea-ice cover. For example, the albedo of the polar oceans
is strongly influenced by sea-ice concentration (e.g. Brooks,
1925), as is much of the heat and moisture transfer between
the ocean and the atmosphere (e.g. Maykut, 1978).

Information on sea-ice concentration is also used to derive
total sea-ice area or extent. In the Arctic the latter has been
found to be linearly related to global-mean temperature (e.g.
Gregory et al., 2002; Niederdrenk and Notz, 2018), atmo-
spheric CO2 concentration (e.g. Johannessen, 2008; Notz and
Marotzke, 2012) and anthropogenic CO2 emissions (Zick-
feld et al., 2012; Herrington and Zickfeld, 2014; Notz and
Stroeve, 2016). These linear relationships allow one to esti-
mate the future evolution of Arctic sea ice directly from the
observational record (e.g. Notz and Stroeve, 2016; Nieder-
drenk and Notz, 2018), to evaluate the sea-ice evolution
in coupled climate models, and to bias correct estimates
from climate models for improved projections of the future
sea-ice cover (e.g. Mahlstein and Knutti, 2012; Screen and
Williamson, 2017; Sigmond et al., 2018). For any of these
applications, the reliability of the underlying sea-ice concen-
tration record is crucial.

This importance of a reliable sea-ice concentration record
is also reflected in the definition of sea-ice essential climate
variables (ECVs) by the Global Climate Observing System
(GCOS), a body of the World Meteorological Organization
(WMO). In their most recent update (GCOS-IP, 2016), they
request that reliable observational records of sea-ice concen-
tration are made available to the climate research community.
However, the reliability and long-term stability of existing
records is often not clear. This is, for example, reflected by
substantial differences between existing estimates of sea-ice
concentration from various algorithms (e.g. Ivanova et al.,
2015; Comiso et al., 2017b).

With our three new climate data records of sea-ice con-
centration we aim to provide the users with new reference
data sets that have three clear advantages over most existing
records. First, all our three records provide quantitative in-
formation on uncertainty and access to filtered as well a raw
values at every grid point and every time step. Second, they
are based on dynamic tie points, which capture the time evo-
lution of surface characteristics of the ice cover and help to
minimize the impact of sensor drift and change in satellite
sensor. Third, they are produced in the context of sustained
services offering committed extension, documentation, trace-
ability, and user support.

The first of our three climate data records (CDRs) is re-
ferred to as OSI-450. It is based on coarse-resolution (30–

60 km) passive microwave (PMW) satellite data that are
available from October 1978 onwards. These data are also
at the heart of the two currently most widely used sea-
ice concentration algorithms, namely the NASA Team al-
gorithm (Cavalieri et al., 1984) and the bootstrap algorithm
(Comiso et al., 2017b). OSI-450 has been released by the
European Organisation for the Exploitation of Meteorolog-
ical Satellites (EUMETSAT) Ocean and Sea Ice Satellite
Application Facility (OSI SAF, http://www.osi-saf.org/, last
access: 15 June 2018) and is a fully revised version of its
predecessor OSI-409 (Tonboe et al., 2016). The second and
third CDRs are called SICCI-25km and SICCI-50km. They
are based on medium-resolution (15–25 km) PMW satellite
data available from June 2002 onwards. These two SICCI
CDRs are released by the European Space Agency (ESA)
Climate Change Initiative (CCI, http://cci.esa.int/, last ac-
cess: 15 June 2018) programme.

All three sea-ice concentration (SIC) CDRs share the same
algorithms, processing chains, and data format. In particu-
lar, they were all developed with their primary application as
climate-data records in mind, putting very narrow constraints
on the permissible long-term drift of the records. As such, the
underlying algorithms are based on earlier work by the Eu-
ropean sea-ice remote-sensing community (Andersen et al.,
2007; Tonboe et al., 2016) and provide sea-ice concentra-
tion estimates with (a) low sensitivity to atmospheric noise
including liquid water content and water vapour, (b) low
sensitivity to surface noise including wind roughening of
the ocean surface, and variability of sea-ice emissivity and
temperature, (c) the capability to adjust to the climatologi-
cal changes in the above-mentioned noise sources, and (d) a
quantification of the remaining noise at each time step for
each pixel. Together, the three new climate-data records are
a unique joint contribution of the two leading European Earth
Observation agencies for addressing the requirements of the
climate research community and climate information ser-
vices. The three CDRs are summarized in Table 1, and the
satellite data used as input are in Table 2. The values in Ta-
bles 1 and 2 will all be introduced in the course of the paper.

In this contribution, we outline the underlying algorithms
and the philosophy behind them. We also provide an evalua-
tion of the resulting climate-data records. We start in Sect. 2
by describing the satellite and ancillary data used as input.
Section 3 describes the algorithms and processing steps im-
plemented to process the data records. Afterwards, Sect. 4 is
devoted to the resulting data records, their evaluation results,
and known limitations. Discussion, outlook, and conclusions
are covered in Sect. 5.

2 Data

This section summarizes the satellite as well as the numeri-
cal weather prediction (NWP) data used in the climate data
records. Each of these data sources are fully described in ded-
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Table 1. Summary of the three SIC CDRs presented in this paper. The values entered in the table are all described in the course of the paper.

Instruments & [channels] Time period Grid spacing Originator DOI

OSI-450 SMMR, SSM/I, SSMIS
[19V , 37V , 37H ]

January 1979–
December 2015

25× 25 km OSI SAF https://doi.org/10.15770/EUM_
SAF_OSI_0008

SICCI-25km AMSR-E, AMSR2
[19V , 37V , 37H ]

June 2002–
October 2011

25× 25 km ESA CCI https://doi.org/10.5285/f17f146a
31b14dfd960cde0874236ee5

July 2012–
May 2017

SICCI-50km AMSR-E, AMSR2
[6V , 37V , 37H ]

June 2002–
October 2011

50× 50 km ESA CCI https://doi.org/10.5285/5f75fcb
0c58740d99b07953797bc041e

July 2012–
May 2017

icated technical documentation, web resources, and scientific
literature, so that we provide only the key information di-
rectly relevant to the discussion in this paper. Figure 1 shows
the temporal coverage of the data sources entering the three
SIC CDRs. Two ESA CCI data records (grey box marked
“ESA CCI (2×)”) are based on the Advanced Microwave
Scanning Radiometer – Earth Observing System (AMSR-E)
and AMSR2 instruments (orange and dark-orange horizon-
tal bars), while the EUMETSAT OSI SAF data record (grey
box marked “OSI SAF (OSI-450)”) is based on the Scanning
Multichannel Microwave Radiometer (SMMR, purple bar),
Special Sensor Microwave/Imager (SSM/I, dark-blue bars),
and Special Sensor Microwave Imager / Sounder (SSMIS,
light-blue bars) instruments on board the Defense Meteoro-
logical Satellite Program (DMSP) satellites. ERA-Interim re-
analysis weather data from the European Centre for Medium-
Range Weather Forecasts (ECMWF) are also used through-
out the period (not shown). Overlap of satellite missions and
the 9-month data gap between AMSR-E and AMSR2 oper-
ations are clearly visible from Fig. 1. Although there was
always at least one satellite mission carrying a relevant pas-
sive microwave instrument after October 1978, a few data
gaps exist in the satellite data record that are too short to ap-
pear in Fig. 1. The most prominent are documented in the
“comments” column of Table 2 and extensive lists of miss-
ing dates are in the product user guides (PUGs) of the CDRs.
These PUGs are always accessible from the data set landing
pages (see DOIs in Table 1). Figure 1 also shows other re-
lated satellite missions that do not enter the new CDRs, but
might be relevant for their future extension in a compatible
Interim Climate Data Record (grey box marked “OSI SAF
ICDR”). They are discussed in our Outlook, Sect. 5.2.

2.1 Input satellite data

More details about the satellite instruments and platforms
are given in Table 2. It lists the satellite platforms, sensors,
and time periods for brightness temperatures (TB) used as
input for the SIC CDRs. Some specific instrument charac-

teristics like channel frequencies, spatial resolution, view an-
gle and area covered by the polar observation hole are also
documented there. Table 2 documents that the instrument se-
ries might have quite different characteristics (e.g. channel
frequencies or incidence angle). Building a consistent data
record requires methodologies that carefully intercalibrate
and tune the algorithms to yield similar results when using
all these sensors. This is the essence of the dynamic tuning
approaches adopted in Tonboe et al. (2016) and further de-
veloped for the new CDRs (Sect. 3).

Building CDRs from this suite of satellite sensors is best
achieved if the selected algorithms only use channels that are
consistently available throughout the period. Slight changes
in incidence angle or wavelengths between the sensor series
can be compensated for by the algorithms, but it is harder
or even impossible to achieve temporal consistency in the
event of sudden loss of channels. In that respect, it is note-
worthy that the 23.0 GHz channels of the SMMR instrument
have been highly unstable since their launch, and eventu-
ally ceased to function on 11 March 1985 (Njoku et al.,
1998). There is thus no continuous data record of bright-
ness temperatures in the vicinity of the water vapour absorp-
tion line (22.235 GHz). Such a wavelength is typically used
in filtering weather effects in other SIC CDRs (e.g. Meier
et al., 2017). Our algorithms do not rely on such a channel
(Sect. 3.4.2).

Although not identical, the spatial resolution of the chan-
nels needed for the SIC algorithms is similar for the three
coarse-resolution sensor series (SMMR, SSM/I, and SSMIS)
with about 70×45 km instantaneous field-of-view (iFoV) di-
ameters for the 19 GHz frequency channels, and 38× 30 km
for the 37 GHz ones (Table 2). The two medium-resolution
radiometers AMSR-E and AMSR2 have finer resolutions at
these channels (27× 16 km and 14× 9 km), accompanied
by increased sampling (10× 10 km instead of 25× 25 km
for SSM/I). It is noteworthy that iFoV diameters, as re-
ported in Table 2 and at several online resources, such as
the WMO OSCAR Space-based Capabilities database, are
not a measure of the true footprint of an individual measured
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Table 2. Platform, instrument, and time period for input brightness temperatures used in the sea-ice data records. All frequencies listed have
both horizontal and vertical polarization channels.

Platform and
instrument

Start date Stop date Frequency, in GHz, (footprint
resolution in km) of channels

Polar obser-
vation hole
(north- and
southward)

View angle Comment

Nimbus-7
SMMR

1 January 1979 20 August 1987 18.0 (54× 35), 37.0 (28× 18) 84◦ 50.2◦ Operates every other
day. Two long pe-
riods with missing
data are 29 March
–23 June 1986 and 3
–15 January 1987.

DMSP F08
SSM/I

9 July 1987 18 December 1991 19.3 (70× 45), 37.0 (38× 30) 87◦ 53.1◦ A long period with
missing data is 3–
31 December 1987.

DMSP F10
SSM/I

7 January 1991 13 November 1997 19.3 (70× 45), 37.0 (38× 30) 87◦ 53.1◦ Significant variation
(slow oscillation) of
the incidence angle
during its lifetime.

DMSP F11
SSM/I

1 January 1992 31 December 1999 19.3 (70× 45), 37.0 (38× 30) 87◦ 53.1◦

DMSP F13
SSM/I

3 May 1995 31 December 2008 19.3 (70× 45), 37.0 (38× 30) 87◦ 53.1◦ F13 operated longer
but 31 Decem-
ber 2008 is the
end of coverage in
CM-SAF FCDR R3

DMSP F14
SSM/I

7 May 1997 23 August 2008 19.3 (70× 45), 37.0 (38× 30) 87◦ 53.1◦

DMSP F15
SSM/I

28 February 2000 31 July 2006 19.3 (70× 45), 37.0 (38× 30) 87◦ 53.1◦ F15 operated longer
but 31 July 2006 is
the end of coverage
in CM-SAF FCD
R R3

DMSP F16
SSMIS

1 November 2005 31 December 2015 19.3 (70× 45), 37.0 (38× 30) 89◦ 53.1◦

DMSP F17
SSMIS

14 December 2006 31 December 2015 19.3 (70× 45), 37.0 (38× 30) 89◦ 53.1◦ F17 operated longer
but 31 Decem-
ber 2015 is the
end of coverage in
CM-SAF FCDR R3

DMSP F18
SSMIS

8 March 2010 31 December 2015 19.3 (70× 45), 37.0 (38× 30) 89◦ 53.1◦ F18 operated longer
but 31 Decem-
ber 2015 is the
end of coverage in
CM-SAF FCDR R3

EOS Aqua
AMSR-E

1 June 2002 3 October 2010 6.9 (75× 43), 18.7 (27× 16),
36.5 (14× 9)

89.5◦ 55◦

GCOM W1
AMSR2

23 July 2012 31 May 2017 6.9 (62× 35), 18.7 (22× 14),
36.5 (12× 7)

89.5◦ 55◦ AMSR2 operated
longer but 31 May
2017 is the last date
we fetched from
JAXA for the CDRs.
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Figure 1. Time-coverage diagram for the new ESA CCI and EUMETSAT OSISAF SIC CDRs. The ESA CCI CDR is based on medium-
resolution AMSR-E and AMSR2 sensors, while the EUMETSAT OSISAF CDR uses the coarse-resolution SMMR, SSM/I, and SSMIS
instruments. Other current and future passive microwave instruments, as well as the OSI SAF ICDRs, are discussed in our Outlook, Sect. 5.2.

pixel. This is because the iFoV takes into account neither
the motion of the antenna (scan direction) nor the motion
of the spacecraft (along its orbit) during the integration pe-
riod needed to acquire a single pixel. The effective field-of-
view (eFoV) diameter includes the two effects and is a bet-
ter measure of the true footprint of the instrument. For ex-
ample, the eFoV of the SSM/I 19 GHz channels is closer to
70× 75 km. The dimensions of the iFoV and eFoV are re-
ferred to as the resolution of the channels. The sampling is
how close in space the FoVs are acquired. Most channels are
thus oversampled.

Two of the differences between the instrument series are
the width of their observation swaths, and the inclination of
their orbits. This translates into different extents of the polar
observation hole, and no data are available for sea-ice moni-
toring north of 84◦ (SMMR), 87◦ (SSM/I), 89◦ (SSMIS), and
89.5◦ (AMSR-E and AMSR2).

For our data records, a newly reprocessed version of the
SMMR, SSM/I, and SSMIS data into a Fundamental Cli-
mate Data Record (FCDR, L1) was accessed from the EU-
METSAT Climate Monitoring Satellite Application Facility
(CM-SAF, Fennig et al., 2017). In the FCDR, the TB are re-

computed from Antenna Temperatures (TA), screened and
corrected for known artefacts like solar intrusion, and in-
tercalibrated between missions. The AMSR-E data we use
are the NSIDC FCDR AE_L2A V003 FCDR by Ashcroft
and Wentz (2013), covering the full lifetime of the mission
from 1 June 2002 to 4 October 2011. For AMSR2, we use
recalibrated (version 2) L1R data that we accessed directly
from the Japan Aerospace Exploration Agency (JAXA), cov-
ering 23 July 2012 until 15 May 2017, that is the end of the
SICCI-25km and SICCI-50km CDRs. For both AMSR-E and
AMSR2, the TB are available both at their nominal resolution
(documented in Table 2), and post-processed at lower resolu-
tion matching those of other channels (e.g. the 36.5 GHz TB
at the resolution of the 6.9 GHz channel). We use the nomi-
nal resolution of the TB, not the resolution-matched ones. It
is noteworthy that the AMSR2 data are not from an FCDR,
but rather from an archive of an operational data stream. We
use the data as they are provided by JAXA, without applying
extra calibration towards AMSR-E (thus unlike Meier and
Ivanoff, 2017) since our algorithms do not require such strin-
gent calibration thanks to using dynamic tuning (Sect. 3.3).
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2.2 ERA-Interim data

The microwave radiation emitted by the ocean and sea ice
travels through the Earth’s atmosphere before being recorded
by the satellite sensors. Scattering, reflection, and emission in
the atmosphere add or subtract contributions to the radiated
signal, and challenge our ability to accurately quantify sea-
ice concentration. An initial step in our processing is thus the
explicit correction of the TBs for the atmospheric contribu-
tion to the top of the atmosphere radiation (see Sect. 3.4.1).
For this purpose, we accessed the global 3-hourly fields from
ECMWF’s ERA-Interim reanalysis (Dee et al., 2011). Fields
of 10 m wind speed, 2 m air temperature, and total column
water vapour are used. The ERA-Interim reanalysis starts in
January 1979 and is available throughout the time period of
our CDRs. Unavailability of ERA-Interim data prior to 1979
made it impractical to use the earliest period of SMMR data
(October to December 1978).

3 Algorithms and processing details

This section introduces the algorithms and some processing
elements that are used in the making of the SIC CDRs. In
many cases, these algorithms are evolutions of those already
applied in the previous version of the EUMETSAT OSI SAF
CDR (OSI-409, Tonboe et al., 2016).

3.1 Overview of the processing chain

Figure 2 gives an overview of the processing chain for the
three CDRs. The red boxes are data (stored in data files)
and the blue boxes are processing elements that apply al-
gorithms to the data. The whole process is structured into
three chains, at Level 2 (left-hand side), Level 3 (middle),
and Level 4 (right-hand side). The input Level 1 (L1) data
files hold the fields observed by the satellite sensors at the
top of the atmosphere, in satellite projection: the brightness
temperatures (TB) are structured in swath files. The Level 2
(L2) chain transforms these into the environmental variables
of interest, but still on swath projection: the SIC, its associ-
ated uncertainties, and flags. The L2 chain holds an iteration
(marked by the “2nd iteration” grey box) similar to the work-
flow in Tonboe et al. (2016) and stemming from the develop-
ments of Andersen et al. (2006). This iteration implements
two key correction schemes: the atmospheric correction al-
gorithm at low-concentration range (Sect. 3.4.1) and a novel
correction for systematic errors at high-concentration range
(Sect. 3.4.3). The Level 3 (L3) chain collects the L2 data files
and produces daily composited fields of SIC, uncertainties,
and flags on regularly spaced polar grids. These fields can
and will typically exhibit data gaps, e.g. in case of missing
satellite data. The Level 4 (L4) chain fills the gaps, applies
extra corrections, and formats the data files that will appear
in the CDR.

The next subsections are devoted to giving some more de-
tails about the main features of the several algorithms in-
volved.

3.2 A hybrid, self-tuning, self-optimizing sea-ice
concentration algorithm

A new sea-ice concentration algorithm was developed dur-
ing the ESA CCI Sea Ice projects and is used for the three
CDRs. It is an evolution of the algorithms used in Tonboe
et al. (2016). In this section, we describe both how the algo-
rithm is trained to TB training data sets, and how it is then
applied to actual TB measurements recorded by satellite sen-
sors. The process of selecting training TB data is covered in
Sect. 3.3.

We call the SIC algorithm a hybrid algorithm because it
combines two other SIC algorithms: one that is tuned to per-
form better over open-water and low-concentration condi-
tions (named BOW for best open water), and one that is tuned
to perform better over closed-ice and high-concentration con-
ditions (named BCI for best closed ice). The combination
equation is quite simply a linear weighted average of BOW
and BCI results, wherewow is the open-water weight and SIC
is expressed as sea-ice fraction [0; 1]:
wOW = 1; forBOW < 0.7
wOW = 0; forBOW > 0.9

wOW = 1−
BOW− 0.7

0.2
forBOW ∈ [0.7; 0.9]

;

SIChybrid = wOW×BOW+ (1−wOW)×BCI. (1)

OSI-409 already used a hybrid method. It combined the
bootstrap frequency mode (BFM) algorithm (Comiso, 1986)
as BOW, and the Bristol (BRI) algorithm (Smith and Bar-
rett, 1994; Smith, 1996) as BCI. Andersen et al. (2007) and
later Ivanova et al. (2015) confirmed that BFM (BRI) was
so far the published algorithm, including NASA-Team and
bootstrap, performing best at low (high) SIC conditions,
and notably that BRI is more accurate at high concentration
than the bootstrap polarization mode (BPM) algorithm. BFM
and BPM are widely used for sea-ice monitoring in what is
commonly known as the bootstrap algorithm (Comiso and
Nishio, 2008). Smith (1996) introduces the BRI algorithm
as a generalization of the BFM and BPM algorithms. BFM
computes SIC values in the (19V , 37V ) TB space and BPM
in the (37V , 37H ) TB space. BRI uses the three-dimensional
(19V , 37V , 37H ) TB space, where 19V (19H ) is notation for
“the channel with a frequency near 19 GHz and with vertical
(horizontal) polarization”.

Figure 3 illustrates the functioning of the BFM algo-
rithm. Comiso (1986) recognized that the typical signature
of open-water (OW, SIC= 0 %, grey triangles) TB data clus-
ters around an averaged point location (the OW tie point,
H) in the (19V , 37V ) TB space. Conversely, the closed-ice
(CI, SIC= 100 %, grey discs) TB data mostly cluster along
a line (the consolidated ice line A–D). Comiso (1986) thus
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Figure 2. From (a) to (c), the three main elements (Level 2, Level 3, and Level 4) in the sea-ice concentration (SIC) processing workflow. The
red boxes depict data files, the blue boxes correspond to individual steps (a.k.a. algorithms) in the processing. The files that exit a processing
chain (e.g. the “L2 SIC and uncert and OWF” at the bottom of the Level 2 processing chain) are the input for the next level of processing.
Acronyms: NT is the Nasa Team algorithm, OWF is open-water filter, RTM is radiative transfer model, uncert stands for uncertainty, L2 is
Level 2, L3 is Level 3, L4 and is Level 4.

designed a SIC algorithm wherein isolines of constant SIC
are parallel to the A–D line and pass through the measured
TB at point P. A geometric algorithm using the intersection
of the (H, P) and (A, D) lines at point I returns the SIC value
(in our example SIC= 68 %). In the same study, similar ag-
gregation of typical TB signatures and a geometric algorithm
were also used in the (37V , 37H ) TB space (BPM algorithm).
For easing later discussion, here we note that in winter Arc-
tic conditions, the typical multi-year sea-ice signature is to
the left of the ice line – close to D – while first-year sea
ice and young sea ice is to the right – closer to A (Comiso,
2012). The AMSR-E TB samples in Fig. 3 are from Peder-
sen et al. (2018), the ESA CCI Sea Ice Round Robin Data
Package (RRDP).

The left-hand panel of Fig. 4 is from Smith (1996) and
modified with colours to describe how BFM (frequency
scheme), BPM (polarization scheme) and BRI (Bristol algo-
rithm) view the open-water (scatter around H) and closed-ice
(scatter along the D–A line) data in the three-dimensional
(19V , 37V , 37H ) TB space. The view direction of BRI is
equivalent to projecting the TB data on a data plane, which
Smith (1996) chose to contain both the closed-ice line (D–

A) and the open-water point H. Because this particular plane
offers the largest dynamic range between the closed-ice and
open-water signatures, Smith (1996) states that it is an opti-
mum projection plane. This, however, fails to recognize that
the scatter of the closed-ice points around the line and that
of open-water TB samples around the point H are anisotropic
in the (19V , 37V , 37H ) TB space. The open-water scatter
has increased variance along the directions resulting from
weather effects (including wind speed, cloud liquid water,
and water vapour) on the emissivity of water. The closed-ice
scatter also has increased variance directions, e.g. due to ice-
type and snow characteristics. Because of these anisotropies,
the optimal projection plan will generally not be that of BRI.

Our new algorithm is a generalization of BRI. Its principle
is also introduced in Fig. 4 (left panel). Like in BRI we seek
an optimum “data plane” on which to project the TB data,
and we impose that this plane holds the closed-ice line (the
D–A line, supported by unit vector u). Vector u is computed
by principal component analysis (PCA) and is the direction
with highest variance in the CI TB samples. Conversely to
BRI, we do not impose H on the projection plane. We rather
rotate the plane around u and seek the optimum rotation an-
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Figure 3. Illustration of the bootstrap frequency mode (BFM,
Sect. 3.2) and open-water filter (OWF, Sect. 3.4.2) algorithms in a
36.5V (x axis) and 18.7 GHz (y axis) TB space of AMSR-E (Winter
NH conditions). The grey symbols are actual AMSR-E TB measure-
ments over SIC= 0 % (triangles) and SIC= 100 % (disks) condi-
tions, from Pedersen et al. (2018). The SIC= 100 % measurements
fall generally along a line (the consolidated ice line), while the mean
open-water signature is point H. An example measurement P (black
circle) falling on the SIC= 68 % isoline illustrates the functioning
of BFM. The blue solid and dotted lines illustrate the tuning and
functioning of the OWF (as described in Sect. 3.4.2). The black
solid curve fitting SIC= 100 % conditions illustrates the ice curve
correction (as described in Sect. 3.4.3).

gle θ that yields best SIC accuracy. On Fig. 4 (left panel), we
mark three unit vectors v, corresponding to three different
rotation angles and thus projection planes. By convention,
θ = 0◦ defines the BFM (19V , 37V ) plane, and θ =+90◦

defines the BPM (37V , 37H ) plane. The BRI plane typi-
cal has values around θ =+30◦. By varying θ the optimiza-
tion process samples several planes and eventually returns
the optimal angles θOW and θCI that respectively define the
BOW and BCI algorithms. This optimization step allows us to
cope with the anisotropy of the OW and CI TB samples in the
(19V , 37V , 37H ) TB space. The right-hand panel of Fig. 4
shows the process of such an optimization in a case using
AMSR2 data from the Northern Hemisphere. The solid lines
plot the variation in the accuracy (measured as standard devi-
ation of SIC, on the y axis) of the SIC algorithms defined by
the rotation angle (x axis) against the OW (blue) and CI (red)
training TB data. The minimum of the blue and red curves
are not achieved at the same angle. This is a clear illustration
that there cannot be a single SIC algorithm that performs best
both on low-concentration and high-concentration conditions

and confirms the strategy already adopted by Comiso (1986),
Andersen et al. (2007), and Tonboe et al. (2016) to construct
hybrid algorithms.

Figure 4 (right panel) also shows that the optimum rotation
angle for OW cases is generally not exactly at θ = 0◦ (BFM).
Likewise, the optimum rotation angle for CI cases is gener-
ally not the same as that corresponding to the BRI plane. θOW
(blue disc) and θCI (red disc) thus indeed define more accu-
rate algorithms than BFM and BRI. In that particular exam-
ple, the improvement is mostly for OW conditions and lim-
ited for CI conditions. The values of θOW and θCI will vary
with the exact frequencies, calibration, or viewing angle of
the instrument (Table 2), as well as with the OW and CI sig-
natures that exhibit regional, seasonal, and interannual varia-
tions. The new hybrid, self-optimizing algorithms described
in this section can always be tuned to available training data
(see Sect. 3.3) and deliver optimum and time-consistent per-
formance.

We can draw some additional information from the right-
hand panel of Fig. 4. First, we seem to confirm the findings of
Smith (1996) that BRI performs better than BPM (that corre-
sponds to θ =+90◦). Indeed, the red curve increases all the
way to θ =+90◦ and shows poor algorithm accuracy for the
(37V , 37H ) projection plane. Second, we observe that both
the blue and red curves hit a maximum standard deviation
(minimum accuracy) somewhere around θ =−60◦ (the peak
value is outside the y range of the plot). This quite simply
corresponds to the worst possible choice of projection plane,
for which the OW TB data are projected onto the CI ice line,
resulting in the smallest dynamic range between OW and CI
signatures.

The geometric descriptions above were all carried out in a
(19V , 37V , 37H ) space. The same reasoning can, however,
be carried within other 3-D TB spaces, as long as such spaces
offer a clustering of the CI conditions along an ice line and
sufficient dynamic range between the OW signature and the
CI line. In the new CDRs, we use two different TB spaces: the
OSI-450 and SICCI-25km CDRs use the (19V , 37V , 37H )
space, while the SICCI-50km CDR uses the (6V , 37V , 37H )
space. Both TB spaces feature two higher-frequency channels
with same wavelength but alternate polarization (37 GHz in
both cases), and a lower-frequency vertically polarized chan-
nel (19V or 6V ). The role of the higher frequencies is to en-
sure a significant spread of the CI TB samples along the ice
line and thus offer a good base for computing vector u with
PCA. They also bring a higher spatial resolution to the re-
trieved SIC, since higher-frequency channels achieve higher
spatial resolution (Table 2). The role of the lower vertically
polarized channel is to ensure a sufficient dynamic range be-
tween OW and CI signatures and thus aim to reduce retrieval
noise. This is at the cost of bringing a coarser spatial resolu-
tion into the algorithm.

This section has so far covered how the new algorithms are
designed and tuned to training data. At the end of the tuning
process, the unit vector u defining the closed-ice line, the two
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Figure 4. (a) Three-dimensional diagram of open-water (H) and closed-ice (ice line between D and A) brightness temperatures in a 19V ,
37V , 37H space (black dots). The original figure is from Smith (1996). The direction U (violet, sustained by unit vector u defined in
Sect. 3.4.3) is shown, and vectors vBristol (blue), vBest-ice (red), and vBest-OW (green) are added, as well as an illustration of the optimization
of the direction of V for the dynamic (self-optimizing) algorithms. (b) Evolution of the SIC algorithm accuracy for open-water (blue) and
closed-ice (red) training samples as a function of the rotation angle θ in the range [−90◦; 90◦]. Square symbols are used for the BFM
(frequency mode) and BRI (Bristol) algorithms. Disk symbols locate the new, self-optimizing algorithms.

angles θOW and θCI, and the TB coordinates of the OW and
CI mean tie points are recorded and stored to disk for later
use. These values are the tuned parameters needed to apply
the algorithms. Applying the algorithm to a set of new TB
data (e.g. a new swath of instrument data) is then straight-
forward. Each TB triplet – (19V , 37V , 37H ) or (6V , 37V ,
37H ) – is projected onto the two optimal planes (defined
by u and each of the θ angles), and a BFM-like geometric
SIC algorithm is applied in both planes (like in Fig. 3 but the
x axis and y axis are now along directions in the projection
plane), yielding two values: SICBOW and SICBCI. The two
SIC values are combined using Eq. (1) to yield the final SIC
estimate.

3.3 Dynamical tuning of the SIC algorithm

As described in the previous section, tuning the algorithms
requires two sets of training data: one from OW areas
(SIC= 0 %) and one from areas we assume have fully CI
cover (SIC= 100 %). As in Tonboe et al. (2016), the train-
ing of the algorithms is performed separately for each instru-
ment and for each hemisphere. In addition, the training is up-
dated for every day of the data record and is based on a [−7;
+7 days] sliding window worth of daily samples (where Ton-
boe et al., 2016 used a [−15;+15 days] sliding window). Our
sliding window is made shorter so that tie points react more
rapidly to seasonal cycles, e.g. onset of melting.

The dynamic training of our algorithms allows us to
(a) adapt to interseasonal and interannual variations of the
sea-ice and open-water emissivity, (b) cope with differ-
ent calibration of different instruments in a series, or be-

tween different FCDRs, (c) cope with slightly different fre-
quencies between different instruments (e.g. SMMR, SSM/I,
and AMSR-E all have a different frequency around 19 and
37 GHz; see Table 2), (d) mitigate sensor drift (if not already
mitigated in the FCDR), (e) compensate for trends poten-
tially arising from the use of NWP reanalysed data to correct
the TB (see Sect. 3.4.1).

As in Tonboe et al. (2016), the CI training sample is based
on the results of the NASA Team (NT) algorithm (Cavalieri
et al., 1984): locations for which the NT value is greater
than 95 % are used as a representation of 100 % ice (Kwok,
2002). Recent investigations, e.g. during the ESA CCI Sea
Ice projects, confirmed that NT was an acceptable choice for
the purpose of selecting closed-ice samples. The tie points
for applying the NT algorithm to SMMR, SSM/I, and SS-
MIS are taken from Appendix A in Ivanova et al. (2015).
The same tie points are used for AMSR2 (not covered by
Ivanova et al., 2015) as for AMSR-E. To ensure temporal
consistency between the SMMR and later instruments, the
closed-ice samples for NH are only used for algorithm tun-
ing if their latitude is less than 84◦ N, which is the limit of
the SMMR polar observation hole (Table 2).

The selection of the OW tie-point samples has been re-
vised since Tonboe et al. (2016), which used fixed ocean
areas at middle to high latitudes. The training areas now
vary on a monthly basis, and follow the sea-ice cover more
closely. In practice, the OW locations are those falling in a
150 km wide belt just outside the monthly varying maximum
ice extent climatology (which is itself described in Sect. 3.6).
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3.4 Strategies to further reduce systematic errors and
random noise

The algorithms described in Sect. 3.2 are self-optimizing
so that they yield the highest accuracy at high- and low-
concentration ranges. Nevertheless, all TB triplets with a de-
parture from the mean CI or OW signatures will yield a
departure from 0 % and 100 % sea-ice concentration. Ran-
dom departures that do not have apparent spatial or tem-
poral structures are often referred to as “random noise”,
while departures that are somewhat stable (correlated) in
space and time are referred to as “systematic errors”. Anal-
ysis of time series of sea-ice concentration maps retrieved
from the algorithm from Sect. 3.2 reveal that the departure
at low-concentration range (open water) is typically random
noise, while more systematic errors are observed at high-
concentration range (closed ice). This is explained by the
different nature of the error sources playing a role at these
two ends of the sea-ice concentration range: weather-related
effects at synoptic scales over open water, and surface emis-
sivity variability (due to ice type, temperature of the emission
layer, snow depth, etc.) over closed ice. In this section, we
describe strategies implemented in the processing chain to
further reduce random noise over open water, and systematic
errors over closed ice. Both correction steps are applied dur-
ing the second iteration of the L2 chain (Fig. 2) and we note
SICucorr (uncorrected), the uncorrected SIC value, before the
start of the second iteration.

3.4.1 Radiative transfer modelling for correcting
atmosphere influence on brightness temperatures

As described in Andersen et al. (2006) and confirmed in
Ivanova et al. (2015), the accuracy of retrieved sea-ice con-
centration can be greatly improved when the brightness tem-
peratures are corrected for atmospheric contribution by us-
ing a radiative transfer model (RTM) combined with surface
and atmosphere fields from NWP reanalyses. The correction
using NWP data is only possible in combination with a dy-
namical tuning of the tie points, so that trends from the NWP
model are not introduced into the sea-ice concentration data
set. The correction scheme implemented in the new CDRs is
based on a double-difference scheme, similar (but not identi-
cal) to that described in Andersen et al. (2006) or Tonboe et
al. (2016).

The scheme evaluates the correction offsets δTB (one per
channel), the difference between two runs of the RTM: TBnwp
uses estimates from NWP fields (in our case ERA-Interim),
while TBref uses a reference atmospheric state with the same
air temperature as TBnwp, but zero wind, zero water vapour,
and zero cloud liquid water. δTB is thus an estimate of the
atmospheric contribution at the time and location of the ob-

servation.

TBnwp = F
(
Wnwp, Vnwp, Lnwp = 0; TS, SICucorr, θ0

)
TBref = F (0, 0, 0; TS, SICucorr, θinstr)

δTB = TBnwp− TBref

TBcorr = TB− δTB (2)

For TBnwp, the RTM function F simulates the brightness
temperature emitted at view angle θ0 by a partially ice-
covered scene with sea-ice concentration SIC, and with sur-
face and atmospheric states described by Wnwp (10 m wind
speed, m s−1), Vnwp (total columnar water vapour, mm),
Lnwp (total columnar liquid water content, mm), and TS
(2 m air temperature). θinstr is the nominal incidence angle
of the instrument series (see Table 2). Our double-difference
scheme is thus both a correction for the atmosphere influence
on the TB (as predicted by the NWP fields) and a correction to
a nominal incidence angle. The latter is required to stabilize
the DMSP SSM/I F10 signal, the view angle of which varied
significantly: the peak-to-peak daily average incidence angle
variation due to the platform’s orbital drift was 52.6–53.7◦

according to Colton and Poe (1999). The typical values of
δTB range from about 10 K over open water to few tenths of
a kelvin over consolidated sea-ice. The liquid water content
(L) fields from global NWP fields (and ERA-Interim in par-
ticular) were found to not be accurate enough to be used in
our atmospheric correction scheme (Lu et al., 2018). The TB
are thus not corrected for L (L= 0 in both TBnwp and TBref),
and the induced remaining noise transfers into uncertainty in
SIC.

We use the remote sensing systems (RSSs) RTM, for
which the tuning to different instruments is documented in
Wentz (1983) for SMMR, Wentz (1997) for SSM/I and SS-
MIS, and Wentz and Meissner (2000) for AMSR-E and
AMSR2. It is a parameterized, fast RTM optimized for the
frequencies and view angles covered by the passive mi-
crowave sensors at hand. It originally allowed ocean and at-
mosphere simulations and was later extended to cover sea-ice
surface conditions (Andersen et al., 2006). Since the RTM
is used in the double-difference scheme described above,
accurate calibration of the RTM simulation with the mea-
sured brightness temperatures is not critical since such off-
sets cancel out. The atmospheric correction step has more
impact over open-water and low-concentration values than
over closed-ice conditions. This is because of (1) a generally
drier atmosphere above the consolidated ice pack, (2) the ef-
fect of wind speed on ocean (and not sea-ice) emissivity, and
(3) the low emissivity and high reflectivity of water at the fre-
quencies we use in SIC algorithms (Andersen et al., 2006).

3.4.2 Open-water filtering

The weather filters (WFs) of Cavalieri et al. (1992) have been
used in basically all available SIC CDRs except the earlier
EUMETSAT OSI SAF data sets (Andersen et al., 2007; Ton-

The Cryosphere, 13, 49–78, 2019 www.the-cryosphere.net/13/49/2019/



T. Lavergne et al.: Version 2 of the EUMETSAT OSI SAF and ESA CCI SIC CDRs 59

boe et al., 2016). WFs are algorithms that combine TB chan-
nels to detect when rather large SIC values (sometimes up
to 50 % SIC) are in fact noise due to atmospheric influence
(mainly wind, water vapour, cloud liquid water effects) and
should be reported as open water (SIC= 0 %). The concept
of WFs is very different from the atmospheric correction of
TB described in the previous section: the atmospheric correc-
tion reduces noise in the resulting SIC fields (but does not
yield exactly SIC= 0 % over open water), while the WF is
a binary test that decides whether a pixel should be set to
exactly SIC= 0 % or left unaffected. In the new CDRs, we
combine both approaches as we apply the WFs after the at-
mospheric correction.

While WFs are effective at removing false sea ice in open-
water regions, they will always falsely remove (detect as
open water) some amount of low-concentration (and/or thin)
sea ice, especially along the ice edge (Ivanova et al., 2015).
This is why the OSI SAF SIC CDRs have so far not adopted
WFs and why the effect of WFs can be fully reverted in our
new SIC CDRs on an ad-hoc basis by using status flags in
the product files (see Sect. 4.1).

The WF by Cavalieri et al. (1992) detects (and con-
sequently forces SIC to 0 %) all observations with either
GR3719v> 0.050 and/or GR2219v> 0.045 as open water.
The GR notation stands for gradient ratio and this quantity
is computed, e.g. as GR3719v= (TB37v− TB19v)/(TB37v+

TB19v). Many investigators have re-used these thresholds un-
changed, while they should really be adapted to the different
wavelengths and calibration of the different instruments. For
example, Spreen et al. (2008) adapted the GR3719v thresh-
old to 0.045 and GR2219v to 0.040 when processing sea-
ice concentration with AMSR-E data. The NOAA/NSIDC
sea ice concentration CDR uses the Cavalieri et al. (1992)
thresholds, with the exception of Southern Hemisphere pro-
cessing for SSMIS F17, where the GR3719v threshold is set
to 0.053 (Algorithm Theoretical Basis Document for Meier
et al., 2017).

Following Lu et al. (2018), we use a WF computed from
TB that has been corrected for atmospheric influence and fea-
tures a test for GR3719v only. There are two reasons for not
using GR2219v: (1) a near 22 GHz channel is not available
throughout the satellite time series (Sect. 2.1); and (2) the
correction of water vapour using ERA-Interim data is effec-
tive enough in polar regions so that very limited additional
screening is triggered by GR2219v when applied after TB
correction. Indeed, GR2219v is mostly effective at detecting
water vapour effects, while GR3719v is effective at screening
cloud liquid water and wind-roughening effects (Cavalieri et
al., 1995).

The functioning of the WF is illustrated in Fig. 3. In the
(19V , 37V ) diagram of Fig. 3, the GR3719v= T isolines
are steeper than the consolidated ice line (A–D). For se-
lected values of T , the isoline intersects the regions of typ-
ical open-water and low-concentration ice (the solid blue
isoline GR3719v= 0.058 is plotted as an illustration). All

TB data falling below the GR3719v isoline will result in
GR3719v>T and will thus be flagged as OW (SIC= 0 %)
by the GR3719v test. Most of the OW TB data (grey tri-
angle symbols) are thus flagged as OW, as expected. Some
low-concentration TB data (not shown, but falling between H
and (A–D), closer to H) will also be detected as OW by the
GR3719v test. This is an illustration of how WFs based on
this gradient ratio will not only successfully detect false sea
ice as open water, but also wrongly result in ice-free condi-
tions where some true sea ice should have been observed.
The greediness of the GR3719v filter is controlled by the
threshold T , the tuning of which is of paramount impor-
tance for the temporal consistency of the climate data record.
The varying signature of sea-ice and ocean emissivity with
time and hemisphere, the different frequencies of the 19 and
37 GHz channels for different instruments, and the varying
effects of atmospheric correction all prevent the adoption of
fixed thresholds. Instead, we adopt a dynamic approach to
tune the threshold. Our WF is tuned to avoid removing true
ice with concentration larger than 10 %, on average. The tun-
ing is shown in Fig. 3. First, the coordinates for the point
J are computed: J falls where the SIC= 10 % isoline (thick
blue line) crosses the (blue, dotted) line between the OW sig-
nature point H and a point at the rightmost end of the line A–
D. Then, the GR3719v value corresponding to J is computed
and used as a threshold T . Since the exact locations of H, A,
and D vary for each instrument, hemisphere, and day in the
data record, our threshold T will change (although slightly)
during the whole data record, without the need for prescribed
values (such as T = 0.05 for the Cavalieri, 1992 WF). The
value of 10 % SIC is chosen to be below the threshold com-
monly used for defining the sea-ice extent (15 % SIC) to en-
sure that the weather filter does not interfere when computing
the sea-ice extent.

We note finally that the name “weather filter” can be mis-
leading as the non-expert could understand that it is meant
for filtering out weather effects (false sea ice) from calm
open-water and low-ice-concentration conditions. As seen in
Fig. 3, this is not how the GR3719v filter works, as it will
remove true sea ice as well, even in calm weather conditions
(OW samples below J). In addition, GR3719v contains in-
formation on sea-ice type (Cavalieri et al., 1984) and it is
desirable that the filter should work equally for first-year and
multi-year sea ice. For these reasons, we refer to such a fil-
ter as an “open-water filter” (OWF) and include a test for the
SIC value. The OWF implemented in the new CDRs is thus
defined by the following two tests (corresponding to the thick
solid blue line in Fig. 3):{

GR3719v≥ T
or SIC≤ 10% . (3)

Notably, we compute OWFs in swath projection, in the
Level 2 chain (Fig. 2). As a result, each FoV observation at
Level 2 is attached to a binary flag corresponding to OWF
detection. This binary flag is combined during gridding and
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daily averaging to yield Level 3 fields of OWFs. This is a bet-
ter approach than computing WFs from daily averaged grid-
ded TB data, which will smooth and smear the sea-ice edge
region, as well as rapidly changing weather effects such as
cloud liquid water content or wind roughening. Computing
OWFs at Level 2 can also help to mitigate the potential im-
pacts of changes in satellite crossing time between different
missions. The impact of the dynamic tuning of the OWF is
evaluated in Sect. 4.2.1.

3.4.3 Reducing systematic errors at high-concentration
range

Wintertime, monthly averaged maps of SICucorr exhibit sys-
tematic errors at high-concentration ranges, which are espe-
cially visible in the central Arctic Ocean. A novel correction
scheme is implemented as part of the second algorithm iter-
ation (Fig. 2) that effectively mitigates most of these system-
atic errors over the basin.

By construction, SIC algorithms BFM, BPM, BRI, and
our new dynamic algorithms consider that the SIC is exactly
100 % when the input TB falls on the consolidated ice line
(Fig. 3). The concept of an ice line has sustained the devel-
opment of SIC algorithms for decades, since it allows al-
gorithms to return SICs close to 100 % for all consolidated
ice conditions, whatever the type of sea ice (multi-year ice,
first-year ice, mixture of types). However, careful analysis
of the spread of consolidated ice samples along the ice line
reveals that systematic deviations exist and are stable with
time. These systematic deviations draw a consolidated sea-
ice curve, as illustrated with the solid black curve around the
100 % SIC samples. These deviations are best shown in a
coordinate system in which abscissae are computed as u.T

(dot product of u the unit vector sustaining the consolidated
ice line, and T a 3-D TB triplet in TCI, Fig. 4) and the ordi-
nate as BCI(T ) (the result of the best ice SIC algorithm for a
given TB triplet). We refer to the quantity u.T as the distance
along the ice line (DAL). Since u points from multi-year ice
to first-year sea ice (Sect. 3.2, and Fig. 4), older ice have
lower DAL values than younger ice. In winter Arctic con-
ditions, it is typical to observe that BCI(T ) values are con-
sistently lower than 100 % (down to 85 %–90 %) for old ice
(low values of DAL) and consistently higher than 100 % (up
to 105 %–110 %) for new and first-year ice (high values of
DAL). In between these two extremes, the BCI(T ) values os-
cillate between being below and over the SIC= 100 % line.
Our novel correction scheme moves the concept of an ice line
to an ice curve that more closely follows the BCI(T ) samples
along the u axis. A new ice curve is tabulated for each day in
the record by binning theBCI(T ) values by their DAL values.
This consolidated ice curve defines the SIC 100 % isoline
during the second iteration of Level 2, and – conversely to
the atmospheric correction described in Sect. 3.4.1 – has the
greatest effect on consolidated ice regions. It is noteworthy
that the sea-ice curve shown in Fig. 3 is for illustration pur-

pose. As part of the processing, the consolidated ice curve is
not used in the two-dimensional BFM space, but in the three-
dimensional data plane of the dynamic SIC algorithm (see
Sect. 3.2). The amplitude of the sea-ice curve around the sea-
ice line can be different in shape in the SIC algorithm plane.
In addition, the ice curve in Fig. 3 is fitted through the consol-
idated ice points from the ESA CCI Sea Ice RRDP (Pedersen
et al., 2018) that spans several years and winter months and
thus illustrates an average sea-ice curve. The consolidated
sea-ice samples we extract dynamically for [−7; +7 days]
sliding windows (Sect. 3.3) will typically exhibit more vari-
ability due to shorter-term changes in sea-ice signatures.

Figure 5 (left and middle panels) show the spatial dis-
tribution of the total correction for January 2015 (SIC mi-
nus SICucorr), thus including both the effect of the correc-
tion based on the consolidated ice curve and the effect of the
RTM-based correction of the TB. Black solid lines show the
mean sea-ice edge region (at 15 % and 70 % SIC values) dur-
ing the same period. The left panel shows the average total
correction (daily maps of SIC minus SICucorr averaged over
the month of January 2015), while the centre panel shows the
effect of the total correction on SIC variability (variability is
the standard deviation of daily SICucorr maps throughout the
month minus the same variability of daily SIC maps after
correction).

Over closed-ice conditions (inside the 70 % SIC isoline),
the regional patterns of the correction are clearly visible
and seem to match variations in sea-ice age: a large posi-
tive correction (increased SIC) north of the Canadian Arctic
Archipelago and Ellesmere Island (intense red colour) where
the ice is oldest in the Arctic, moderate negative correction
over a large part of the central basin (extending from the cen-
tral Beaufort Sea, over to the North Pole, and to northern
Greenland, light-blue colour, second-year ice), and a slightly
positive correction again over large parts of the Siberian Arc-
tic (light-red colour, first-year ice). The mean January 2015
DAL is shown in Fig. 5 (right) (blue, green, and yellow
colours).

On Fig. 5 (right) we observe an overall increase of the
DAL value from the Canadian Arctic Archipelago (multi-
year ice) across the pole and towards the Laptev and Kara
seas (first-year ice). To confirm the link between DAL and
sea-ice age, we overlay contours≥ 1 year,≥ 2 years, and≥3-
year-old sea ice for January 2015 from Korosov et al. (2018)
on the right panel. Korosov et al. (2018) developed an im-
proved Lagrangian-based sea-ice age tracking algorithm us-
ing the sea-ice drift product of the EUMETSAT OSI SAF
(Lavergne et al., 2010). The correspondence in the transitions
of DAL values with the contour lines of sea-ice age is very
good, indicating that a combination of DAL (right panel) and
ice curve correction (left panel) could be used for sea-ice type
(if not age) classification studies. This is outside the scope of
our study, which is focused on SIC algorithms and the new
data records.
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Figure 5. (a, b) Difference maps between the January 2015 mean (a) and temporal variability (b) of the final SIC and the uncorrected SIC
(SICucorr) in the Arctic Ocean. Black solid lines are at the 15 % and 70 % SIC levels (marginal ice zone). (c) January 2015 mean distance
along the ice line (DAL) values, red lines are transitions between first-year sea ice, second-year sea ice, and older sea ice from Korosov et
al. (2018).

Figure 5 (centre) shows the result of the ice curve cor-
rection on SIC variability. In the regions covered with sea-
ice (>= 70 % SIC), the shades of light blue indicate that
the variability at high concentration is rather consistently re-
duced by about 1 %–2 % SIC by the ice curve correction:
the SIC after correction is a more accurate description of a
nearly 100 % ice cover. A limited number of regions show
no improvement (white colour) or slight degradation. This
reduction in the variability comes in addition to the correc-
tion for the systematic errors (e.g. underestimation north of
Canadian Arctic Archipelago; see left panel for which the ice
curve correction was designed). The analysis of the closed-
ice (>= 70 % SIC) region in Fig. 5 thus confirms that the
ice curve correction works as expected at high-concentration
range and is potentially linked to the age of sea ice.

In the open-water regions of Fig. 5 (outside the 15 % SIC
contour), the reduction in variability (centre panel) is even
larger (3 %–4 % SIC) than over closed-ice regions. This re-
duction is the result of the atmospheric correction step, de-
scribed in Sect. 3.4.1. From the left panel, it appears that the
atmospheric correction step on average increases SIC (shades
of red) over open-water regions close to the sea-ice edge, e.g.
in East Greenland Sea, Barents Sea, and in Labrador Sea.
These regions generally present negative SICs before correc-
tion and are brought closer to 0 % SIC by the process of at-
mospheric correction. This is due to the training OW samples
being selected in lower-latitude conditions (ocean surface, at-
mosphere conditions) rather than prevailing closer to the ice
edge and is also discussed in Sect. 4.2.3 when evaluating un-
certainties.

Still in Fig. 5 (centre panel), the increased variability (red
tones) between the 15 % and 70 % isolines follows logically
from the two above-mentioned reductions: the corrections

enable more accurate retrievals of SICs; thus the ice edge is
more sharply defined in the daily SIC fields, and this results
in higher variability on a monthly basis.

In this section, we described the strategies we imple-
mented to improve the accuracy of the SIC algorithms. In the
next section, we discuss how the remaining noise is quanti-
fied and reported to the users of the data records in the form
of uncertainties.

3.5 Uncertainties

Spatially and temporally varying uncertainty estimates for
each and every SIC value are required of state-of-the-art
CDRs (GCOS-IP, 2016). Uncertainties are needed as soon
as the data are compared to other sources (e.g. other simi-
lar data records) or when data are assimilated into numerical
models. However, there is no unique way to derive nor to
present uncertainties in EO data (Merchant et al., 2017).

The approach to derive and present uncertainties in the
new SIC CDRs is mostly similar to that of Tonboe et
al. (2016): we make the assumption that the total uncertainty
σtot is given by two uncertainty components. That is,

σ 2
tot = σ

2
algo+ σ

2
smear, (4)

where σalgo is the inherent uncertainty of the SIC algorithm
(algorithm uncertainty) including sensor noise and the resid-
ual geophysical noise quantified as variability around the OW
and CI mean signatures, and σsmear is the representativeness
uncertainty due to resampling from satellite swath to a grid
(smearing uncertainty) and the mismatch between footprints
at different channels.

The derivation of σalgo is to a large extent similar to that
described in Tonboe et al. (2016). This term is derived from
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the accuracy (estimated as statistical variance) of the algo-
rithm for retrieving 0 % (100 %) when applied onto the OW
(CI) training data samples (Sect. 3.3). This uncertainty term
is computed at Level 2 (Fig. 2). Each Level 2 SIC estimate in
the data record has an associated σalgo value.

The uncertainty term σsmear is a representativeness uncer-
tainty. It measures the increase in uncertainty due to mis-
matching spatial dimensions such as when (a) the satellite
sensor footprint potentially covers a larger area than that of a
target grid cell, or when (b) the imaging channels used by the
SIC algorithms do not have the same FoV diameter. Table 2
lists the dimensions relevant for discussion of these two ef-
fects. Effect (a) is that the size of the footprint of the 19 GHz
channels of the SMMR, SSM/I, and SSMIS instruments is
larger than the resolution of the grid used to present the SIC
field (25×25 km; see Table 1). Effect (b) is that the footprint
of the 37 GHz channels is smaller than that of the 19 GHz
ones, so that the two frequencies entering the SIC algorithms
do not cover the same area of the Earth’s surface. Intuitively,
both effects should have no or limited impact where the
sea-ice cover is homogeneous (fully consolidated sea ice or
open water). It should be at a maximum where sharp spatial
gradients occur, typically at the sea-ice edge. The smearing
contribution σsmear is difficult to derive analytically and we
carry on the approach of Tonboe et al. (2016) to parameterize
σsmear as a function of a proxy. For the three new CDRs we
parameterize σsmear as a function of the (MAX−MIN)3×3
value, that is the difference between the highest and lowest
SIC values in a 3× 3 grid cell neighbourhood around each
location in the grid. Specifically,

σsmear =K × (MAX−MIN)3×3, (5)

where K is a scalar with a value that depends on the FoV
diameter of the instrument channels used for the SIC compu-
tation and the spatial spacing of the target grid. Several other
proxies for the local variability of the SIC field (among oth-
ers the 3×3 standard deviation, the Laplacian, and power-to-
mean-ratio) were tested and this one was selected for its sim-
plicity and robustness. Values of K were tuned using a foot-
print simulator and selected cloud-free scenes of the marginal
ice zone imaged by the Moderate-Resolution Imaging Spec-
troradiometer (MODIS) as described in Tonboe et al. (2016).
The MODIS images are first classified as water and ice at full
resolution. Two sets of coarser-resolution SIC fields are then
prepared: (1) the footprint simulator is applied to prepare
a synthetic sea-ice concentration field at the resolution of
the frequency channels, and (2) the high-resolution classified
pixels are binned into regular grid cells, e.g. at the target res-
olution of the CDR (e.g. 25×25 km). The mismatch between
the two fields is what we call the smearing uncertainty and is
parameterized against proxies such as (MAX−MIN)3×3. A
value of K = 1 was found to yield good results for all three
CDRs. The value for σsmear is computed as part of the Level 3
chain (Fig. 2), after gridding and daily averaging. The total
uncertainty σtot is finally computed using Eq. (4). In the data

files, the total, the algorithm, and the smearing uncertainty
fields are made available.

3.6 Other relevant algorithms and processing steps

This section introduces some other algorithms and process-
ing steps that are important to the generation of the data
records, but are either less critical for prospective users of
the data or have undergone little evolution since Tonboe et
al. (2016).

Due to the coarse resolution of the sensors used, especially
SMMR, SSM/I, and SSMIS (Table 2), the TB data are in-
fluenced by land emissivity several tens of kilometres away
from the coastline. The emissivity of land is comparable to
sea-ice emissivity and much higher than water emissivity.
This means that sea-ice concentration will be consistently
overestimated in coastal regions. In Tonboe et al. (2016), a
statistical method similar to Cavalieri et al. (1999) was imple-
mented as post-processing to the daily-gridded sea-ice con-
centration maps. Such a method showed limitations and the
new SIC CDRs now introduce explicit land spillover cor-
rection of the TB at all used channels and on swath pro-
jection. The correction algorithm is described in detail in
Maass and Kaleschke (2010). The basic principle is that a
fine-resolution land mask is used together with the antenna
viewing geometry to estimate (and correct for) the simulated
contribution of land emissivity to the observed TB. The algo-
rithm of Maass and Kaleschke (2010) was adopted with some
modification and tuning, including (a) the computation of the
fraction of land in each FoV in the view geometry of the an-
tenna (not after projection to a map), (b) the approximation
of the antenna pattern functions as Gaussian (normal distri-
bution) shapes indexed on the aperture angle from the central
view direction, instead of distance on a projection plane. At
the end of this step, TB of FoV that overlap land and ocean
are corrected for the contribution by land and can enter the
Level 2 sea-ice concentration algorithms. Note that, although
this swath-based correction step is quite efficient at reducing
land spillover contamination, a statistical method similar to
that of Cavalieri et al. (1999) still had to be applied at Level 3;
this is further discussed in Sect. 5.2.

The land masks and climatology for the new SIC CDRs
have been revised since Tonboe et al. (2016). New land
masks for the target 25× 25 km grids (one for NH and one
for SH) were computed based on the Operational Sea Sur-
face Temperature and Sea Ice Analysis (OSTIA) 0.05×0.05◦

land mask (Donlon et al., 2012). This mask was re-used in
the ESA CCI sea surface temperature (SST) L4 data records
and was selected as the input mask for the new SIC CDRs
to increase cross-ECV consistency. The masks are tuned to
closely match that of the NSIDC SIC CDR (the NSIDC
“SSM/I” 25 km Polar Stereographic mask). On average, in
the NH, this corresponds to setting all 25× 25 km grid cells
with a fraction of land lower than 30 % to water (and these
cells can thus potentially be covered with sea ice). There is
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no right or wrong binary land mask at such coarse resolu-
tion, and the decision to tune to the NSIDC SIC CDR land
mask is to help an intercomparison of data records. By the
same token, the monthly varying maximum sea-ice extent
climatology implemented in Meier et al. (2017) was used as
a basis for our own climatology. The modifications included
manual editing of some single pixels based on US National
Ice Center, Canadian Ice Service, and Norwegian Ice Ser-
vice ice charts (e.g. along the coast of northern Norway, for
some summer months in the vicinity of Nova Scotia). The
climatology of peripheral seas and large freshwater bodies
(e.g. Bohai and Northern Yellow Seas, Great Lakes, Caspian
Sea, and Sea of Azov) was also revisited. The cleaned clima-
tologies were then expanded with a buffer zone of 150 km in
the NH and 250 km in the SH. The larger expansion in SH
is to cope with the positive trends in the SH sea-ice extent
(Hobbs et al., 2016). The expanded monthly sea-ice clima-
tology is used both to mask the final product and for defining
the monthly varying area where the open-water training sam-
ples were selected (Sect. 3.3).

As described in the sections above, all the geophysical pro-
cessing is performed on swath projection (Level 2 process-
ing). Gridding (using Gaussian weighting of distance) and
daily averaging (equal weights) of the swath data are tackled
as an initial step of the Level 3 chain (Fig. 2). The methodol-
ogy is mostly similar to that of Tonboe et al. (2016) as swath
data from all available instruments of similar spatial resolu-
tion are combined into daily maps of the NH and SH polar
regions. It is noteworthy that full advantage of the overlap of
satellite missions (see Fig. 1 and Table 2) was taken in order
to reduce the occurrence of missing data areas as much as
possible in the daily composited fields. This contrasts with
the SIC CDR method of Meier et al. (2017), which uses one
SSM/I or SSMIS sensor at a time.

Despite using all the sensors, some data gaps still appear
in the daily SIC maps, especially in the early part of the data
record (late 1970s to mid-1990s). These data gaps are filled
by interpolation (both spatially and temporally) to yield a
more user-friendly data record. The polar observation gap
(largest for SMMR and SSM/I; see Table 2) is filled by in-
terpolation as well. All interpolation of missing data is per-
formed with basic isotropic schemes using Gaussian weight-
ing in the space domain, and equal weighting in temporal
domain. No model data or advanced methods (among others
Strong and Golden, 2016) were implemented. All interpo-
lated data are clearly marked in the product files using status
flags. Days with fully missing input data (e.g. every other
day in the SMMR period) are not created by interpolation,
and the files are missing.

4 The resulting data records and their evaluation

4.1 The data records and selected examples

The SIC CDR released by the EUMETSAT OSI SAF
(OSI-450) extends from January 1979 through to Decem-
ber 2015. It uses data from SMMR, all SSM/I (F08,
F10, F11, F13, F14, F15), and three SSMIS (F16, F17,
and F18). It is delivered on two Equal Area Scalable
Earth 2 (EASE2) grids with 25× 25 km spacing (Brodzik
et al., 2012, 2014), one for the Northern Hemisphere and
one for the Southern Hemisphere. SMMR data for the
period October to December 1978 are not included in
the CDR because of the unavailability of ERA-Interim
data for a correction of the atmospheric influence on TB
(Sect. 2.2). OSI-450 has the following digital object identi-
fier (DOI): https://doi.org/10.15770/EUM_SAF_OSI_0008.
Data are freely available to any users from the EUMETSAT
OSI SAF web pages (http://www.osi-saf.org/, last access:
15 June 2018).

The two SIC CDRs released by the ESA CCI
Sea Ice project (SICCI-25km and SICCI-50km) ex-
tend over two disjointed periods and process data
from AMSR-E (June 2002 to October 2011) and
AMSR2 (July 2012 to May 2017). SICCI-25km (DOI:
https://doi.org/10.5285/f17f146a31b14dfd960cde0874236ee
5) is delivered on the same EASE2 25× 25 km
grids as the OSI SAF CDR. SICCI-50km (DOI:
https://doi.org/10.5285/5f75fcb0c58740d99b07953797bc04
1e) is delivered on an EASE2 50× 50 km grid, with cells
that cover exactly four 25× 25 km cells of the SICCI-25km
and OSI-450 grids. Both SICCI-25km and SICCI-50km are
freely available to any user from the ESA CCI Data Portal
(http://cci.esa.int/data/, last access: 15 June 2018). Figure 6
shows the OSI-450 (top-left panel), SICCI-25km (top right),
and SICCI-50km (bottom left) SIC fields over the Weddell
Sea region on 25 September 2015. The two SIC fields on
the top row are rather similar except in the marginal ice
zone, where the higher resolution of the AMSR2 instrument
(SICCI-25km) with respect to that of the SSMIS (OSI-450)
leads to resolving finer details. The SICCI-50km SIC has
increased granularity due to the lower resolution of the
6 GHz channels compared to the 19 GHz channels.

All three data records share the same data format, which is
Network Common Data Format (NetCDF) version 4 (classic
format). Files abide by the Climate and Forecast (CF) con-
vention (CF-1.6) and the Attribute Convention for Data Dis-
covery (ACDD-1.3). The variables inside the files enable a
flexible use of the data. The main variable is named ice_conc
and holds a SIC field where all the filters (among others the
open-water filter, Sect. 3.4.2) and correction steps (among
others the statistical coastal correction scheme, Sect. 3.6) are
applied. This is the entry point for most prospective users of
these new SIC CDRs and is the variable plotted in the top row
and bottom-left panel of Fig. 6. In addition, a variable named
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Figure 6. Example SIC fields on 25 September 2015 from
the three CDRs (a: OSI-450, b: SICCI-25km, c: SICCI-50km)
over the Weddell Sea. Panel (d) shows the content of variable
raw_ice_conc_values from the OSI-450 file for the same date and
area. Note the two discontinuous colour scales for (d).

raw_ice_conc_values gives access to the original (raw) val-
ues of sea-ice concentration before filtering is applied.

The bottom-right panel in Fig. 6 shows the content of vari-
able raw_ice_conc_values that holds values as nominally re-
turned by the SIC algorithm of the OSI-450 CDR on the same
date and location as the three other panels. A blue–red colour
scale is used for the low-range of SIC values. Both nega-
tive (blue) and positive (red) values appear that correspond
to the intrinsic retrieval noise level of the SIC algorithm be-
fore the OWF is applied. All these values are indeed set to
exactly 0 % by the OWF in variable ice_conc. Note how the
belt of low SIC values is bordered by a dark-red region. This
is very probably true low-concentration or thin sea ice that is
removed by the OWF at the marginal ice zone. Removal of
true sea ice by the OWF was discussed in Sect. 3.4.2. Still on
the bottom-right panel, a yellow–green colour scale is used
to plot large off-range SIC>100 % values. These raw values
are non-physical (like the blue-shaded SIC<0 % values) and
are set to exactly 100 % in variable ice_conc. They might be
interesting for advanced users interested in accessing the full
probability distribution function (PDF) of retrieved SIC val-
ues, for example for data assimilation (DA) applications. The
off-range SIC values are also needed to compute temporal
averages (e.g. monthly means) to avoid introducing biases if
only SIC>= 0 % or SIC=<100 % values enter the averag-
ing. In each file, a status_flag variable indicates which flags

(OWF, maximum extent climatology, etc.) or corrective steps
(land spillover correction) were applied in each grid cell.

Example fields of uncertainties from the OSI-450 CDR
are shown in Fig. 7. The two uncertainty components σalgo
(left panel) and the smearing uncertainty σsmear (centre) are
shown, as well as the total uncertainty σtot (right). The algo-
rithm uncertainty is typically between 2 % and 3 % SIC. It
is lower for sea ice than for open water because the global
variability of closed sea ice is lower than the SIC variability
over open water. It is noted that this variability is not due to
real SIC variability but rather to ice and open-water signa-
ture variability reflected in the estimated SIC; thus it is an
uncertainty. The smearing uncertainty is largest, up to 40 %
SIC, at the ice edge and low, near 0 % SIC, in areas where
all contributing satellite footprints cover the same SIC (e.g.
open water). The total uncertainty, which is the sum (in vari-
ance) of σalgo and σsmear (Sect. 3.5), is dominated by σsmear.
The patterns seen in Fig. 7 are representative of the uncer-
tainties of all three CDRs for both hemispheres during win-
ter. During summer, σalgo is larger by a few percent, and the
increased variability inside the ice pack yields higher σsmear,
leading to larger σtot.

4.2 Evaluation results

The evaluation of a CDR needs to cover three aspects. The
first is to demonstrate consistency of the methods used to
derive the CDR. Key elements of our new suite of algo-
rithms are (i) their application to different sensors (various
SSM/I, AMSR-E, and AMSR2), (ii) a self-optimizing algo-
rithm which dynamically tunes tie points to minimize SIC
errors at 0 % and 100 %, and (iii) a dynamic open-water filter-
ing (OWF) to mitigate spurious SIC values caused by resid-
ual weather influences while keeping actual low SIC. For the
three SIC CDRs published here we investigate time-series
plots of the optimized skills of the SIC algorithms and the
temporal stability of the OWF (Sect. 4.2.1). The second as-
pect is to evaluate the SIC CDRs with independent SIC val-
ues. In the present paper we focus on an evaluation at 0 % and
100 % SIC; results of the evaluation at intermediate SIC with
various independent SIC will be published elsewhere. The
methodology used and the results are given in Sect. 4.2.2.
The third aspect is to evaluate the uncertainty estimates pro-
vided with the SIC CDRs. The uncertainties should provide
the range within which the SIC CDRs values are allowed to
vary around the true value, and this is evaluated at 0 % and
100 % SIC in Sect. 4.2.3.

4.2.1 Monitoring stability and internal consistency

Many time-series plots can be produced to illustrate the sta-
bility and internal consistency of the three CDRs. As an ex-
ample, Fig. 8 shows the time series of the algorithm training
statistics at the open-water target. As described in Sect. 3.2
and 3.3, the algorithms implemented in the three CDRs dy-

The Cryosphere, 13, 49–78, 2019 www.the-cryosphere.net/13/49/2019/



T. Lavergne et al.: Version 2 of the EUMETSAT OSI SAF and ESA CCI SIC CDRs 65

Figure 7. Example fields of uncertainties on 25 September 2015 from the EUMETSAT OSI SAF CDR over the Weddell Sea. The component
σalgo (a), σsmear (b), and the total uncertainty σtot (c) are shown. σtot is dominated by the σsmear contribution.

namically tune their parameters to yield zero bias and mini-
mum standard deviation of the computed SICs (a.k.a. best ac-
curacy) over the open-water (OW) and closed-ice (CI) train-
ing targets. Figure 8 shows the Northern Hemisphere (NH,
top) and Southern Hemisphere (SH, bottom) temporal evo-
lution of the standard deviation (solid lines) and bias (dotted
lines) of the SIC algorithms over OW target areas. Prior to
further describing Fig. 8, it is important to note that the bi-
ases and standard deviations discussed here are internal to the
processing chains, not an evaluation of the CDRs against in-
dependent observations of SICs. An evaluation of the CDRs
against independent ground-truth observations is the topic of
Sect. 4.2.2.

From Fig. 8, it is easy to see that the algorithms imple-
mented in the three CDRs achieve zero bias (dotted lines
along the y = 0 axis) for all instruments and both hemi-
spheres on a daily basis. Achieving zero bias despite the
changes in central wavelengths and calibrations from one
satellite to the next is one of the key advantages of using
dynamically tuned algorithms (Sect. 3.3).

The impact of the explicit correction of brightness tem-
perature for atmospheric noise effects is also clearly visible
in Fig. 8, since the standard deviations resulting from uncor-
rected TB data (thin solid lines) are consistently above those
for corrected data (thick solid lines) by about 3 % to 4 %
on average, depending on the season and hemisphere. The
seasonal variability is also larger from the uncorrected data,
especially in the NH. It is noteworthy that the atmospheric
noise reduction step does not much improve the OW stan-
dard deviation in the SH at the beginning of the OSI-450 pe-
riod for the SMMR instrument (1979–1987). As noted at the
end of Sect. 3.4.1, OSI-450 uses the Wentz (1983) RTM for
SMMR, and the Wentz (1997) RTM for SSM/I and SSMIS.
The parameterizations implemented in the SMMR RTM are
probably less developed than in the SSM/I and SSMIS RTM,

which might explain why the impact on our standard devi-
ation is more limited for SMMR. Another plausible expla-
nation is that the reanalysed fields for wind speed and water
vapour from ERA-Interim are less accurate in the SMMR era
than in the SSM/I and SSMIS era. We note that clear-sky ra-
diances from SSM/I and SSMIS were directly assimilated
in ERA-Interim over the ocean (Dee et al., 2011) but not
SMMR radiances (P. Poli, personal communication, 2018).
This can especially have an impact in the SH, where other
sources of conventional observations are scarcer. Even if not
as large as later in the time series, atmospheric correction
does yield a positive impact on the accuracy of OW SICs
during the SMMR era.

The SICCI-25km and SICCI-50km standard deviations are
also plotted in Fig. 8 (only those after atmospheric correc-
tion so as not to clutter the plot area). SICCI-25km (red)
achieves roughly the same OW standard deviation as OSI-
450. Since SICCI-25km uses very similar frequency chan-
nels to those of OSI-450 (Table 1), it is not surprising that
they achieve similar accuracy. The central frequency of the
AMSR-E and AMSR2 channels (18.7 GHz) is slightly fur-
ther away from the water vapour absorption line (∼ 22 GHz)
than the SSM/I and SSMIS channels (19.3 GHz). This dif-
ference in frequency yields better accuracy for SICCI-25km
than OSI-450 when using uncorrected TB data (not shown)
but this effect is mostly cancelled after atmospheric correc-
tion (though not fully in SH, bottom panel). The same effect
is observed for the standard deviations resulting from uncor-
rected SMMR TB data (purple thin line), which is consistent
with a central frequency of 18.0 GHz (Table 2).

SICCI-50km (green) is more accurate than both SICCI-
25km and OSI-450, by nearly 1 % in NH and 0.5 % in SH.
This is expected from the choice of frequency channels, since
SICCI-50km uses a C-band (6.9 GHz) channel, while SICCI-
25km and OSI-450 use Ku-band (∼ 19 GHz). Three effects
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Figure 8. Time series of performance statistics for the three CDRs (blue: OSI-450, red: SICCI-25km, green: SICCI-50km) over the open-
water target for the Northern Hemisphere (a) and Southern Hemisphere (b). For OSI-450 and SICCI-25km, the colour of the lines is for
individual satellites, as used in Fig. 1. For OSI-450, the thick (thin) solid lines plot the OW standard deviation of SIC (SICucorr). The thin
solid lines are only plotted for OSI-450 so as not to clutter the plot area. The bias of SIC is plotted with a dotted line.

lead to better accuracies of SIC retrievals at low frequencies:
(1) the atmosphere is more transparent, yielding better accu-
racy over OW; (2) the noise sources, such as sea-ice type,
snow depth, and snow scattering, have less impact at low fre-
quencies; and (3) the permittivity (and hence TB) of sea ice
and water are more different, resulting in a larger dynamic
range for sea-ice concentration retrievals. SICCI-50km is de-
signed to be the most accurate of the three SIC CDRs. How-
ever, it achieves a coarser spatial resolution (50 km) due to
the limited size of the AMSR-E and AMSR2 antenna. The
time series in Fig. 8 illustrate that the algorithms behave
as expected across instruments and are effectively tuned to
achieve zero bias and a small retrieval noise for each instru-
ment in the time series.

The role of open-water filters (OWFs) is to detect and re-
move weather-induced false sea ice over open water while
ideally preserving the true low-concentration values (typi-

cally at the ice edge). As introduced in Sect. 3.4.2, the thresh-
old of the OWF is tuned dynamically against the daily up-
dated training data samples (thus by instrument and by hemi-
sphere) to preserve true SIC values down to 10 %. A water–
ice separation limit at 10 % SIC is an ambitious goal but is
necessary to ensure that time series of sea ice extent (SIE,
usually defined with a threshold of 15 % SIC) are not influ-
enced by the OWF and only by the evolution of true SIC. Fig-
ure 9 shows time series of NH (solid lines) and SH (dashed
lines, almost coinciding with NH lines) of the 1 % percentile
value of all ice_conc values (thus after all filters including
the OWF is applied) that are strictly positive and below 30 %
SIC for the OSI-450 (blue), SICCI-25km (red), and SICCI-
50km (green) CDRs. These are thus time series of the typical
minimum detected SIC that are preserved by the OWFs. A
solid horizontal line is drawn at 15 % SIC value, the thresh-
old commonly chosen for SIE computations. The OSI-450
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Figure 9. Time series of the monthly mean 1 % percentile value of
all strictly positive SICs that are below 30 % (variable ice_conc) for
the three CDRs (blue: OSI-450, red: SICCI-25km, green: SICCI-
50km). Solid lines are for NH; dashed lines are for SH. This time se-
ries plot investigates whether the dynamic tuning of the open-water
filters results in temporal consistency of the minimum detected true
SIC across all satellites.

curves are very stable with time and increase only slightly
from around 9 % SIC at the beginning of the period to around
10.5 % SIC at the end. Seasonal variations are visible espe-
cially at the beginning of the time series for NH cases, when
typical winter values are around 7.5 % SIC and peak to 10 %
SIC in summer. They are in any case well below the 15 %
threshold throughout the data record and very little change is
observed when transitioning between sensors. The seasonal
cycles are limited to few tens of a percent at the end of the pe-
riod (few percent at the beginning). The SICCI-25km curves
are close to the OSI-450 ones, but at a slightly larger value
of 11 %, with a seasonal variation range of about 2 %. The
SICCI-25km curves are also well below 15 %. The SICCI-
50km curves are those showing the largest variation. The av-
erage value for SICCI-50km is at about 10 %, but the sea-
sonal variations are much larger, ranging from 5 % to 15 %.
The temporal stability of the time series in Fig. 9 documents
that the tuning of the OWFs at values close to 10 % SIC
is successful for the two data records that rely on the 19
and 37 GHz for computing their SICs (OSI-450 and SICCI-
25km) and is not as good for SICCI-50km, which uses the 6
and 37 GHz channels to compute the SIC values. Although
SICCI-50km does not compute SICs from 19 and 37 GHz
channels, its OWF is still based on the GR3719v threshold
(Sect. 3.4.2). The mismatch in frequency and resolution be-
tween the channels used to compute the OWF and those used
to compute SIC explains the larger variability in the SICCI-
50km time series in Fig. 9.

We note in addition that both the OSI-450 and SICCI-
25km CDRs dynamically tune their optimal data planes for

low-concentration range θOW in the (19V , 37V , 37H ) 3-D
TB space, while the OWF is only tuned in the (19V , 37V )
TB plane. The departure of the optimal SIC plane from the
OWF plane (by convention at θ = 0◦; see right-hand panel in
Fig. 4) could be the cause for the slight increase of the 1 %
percentile curves of OSI-450 during the time period (via an
improvement of the reanalysis data entering the atmosphere
correction step over time), and the different value obtained
with SICCI-25km. Ideally, the OWF should be tuned in the
same 3-D TB space as used for the SIC algorithms. Such 3-
D-based filters do not exist at present and this is addressed
as future work in Sect. 5.2. All in all, we note that all three
CDRs achieve a rather stable detection of true SIC mostly
below the 15 % SIC threshold commonly used to define SIE.
To the best of our knowledge the temporal consistency of the
minimum detected SIC has not been documented for other
available CDRs, although all use OWFs.

4.2.2 Evaluation against ground truth

For the evaluation of the SIC CDRs, we used a temporal
extension of the Round Robin Data Package (RRDP) by
Ivanova et al. (2015) to study the strengths and weaknesses
of more than 30 published SIC algorithms. Among other data
sets, the RRDP v2 holds ground-truth locations for open-
water cases (OW, 0 % SIC) for the period 2002–2015, as
well as ground-truth locations for closed ice (CI, 100 % SIC)
for the period 2007–2016. The OW locations are situated
just outside the climatological mask delineating maximum
sea-ice extent but well inside the buffer zone added to it in
Sect. 3.6. They are distributed as evenly as possible in lon-
gitude. The CI locations are selected in areas of high sea-ice
concentration and after 24 h of convergent sea-ice motion,
as computed from a highly accurate SAR-based sea-ice drift
product from the Copernicus Marine Environment Monitor-
ing Service (CMEMS, http://marine.copernicus.eu, last ac-
cess: 15 June 2018). The OW and CI data sets of the RRDP
are described in more detail in Ivanova et al. (2015) and in
Pedersen et al. (2018).

For the evaluation of the SIC CDRs over open water,
we extracted OSI-450, SICCI-25km, and SICCI-50km CDR
SIC (variable raw_ice_conc_values) and total uncertainty
σtot data at the grid cell closest to the OW locations in the
RRDP v2 from 2 months in summer (August and Septem-
ber in the Arctic and January and February in the Antarctic)
and from 3 months in winter (January to March in the Arctic
and July to September in the Antarctic). For the evaluation at
100 % SIC conditions, we collocated the SIC CDRs with the
SAR-based CI locations in the RRDP v2 for months Novem-
ber to March (Arctic) and May to September (Antarctic) in
the same way as we did for open water; no spatial or tem-
poral interpolations are performed. We note that CI ground-
truth data from East Antarctica are missing completely, how-
ever, because of a lack of SAR image acquisitions. Using the
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Figure 10. SIC distribution around SIC= 0 % at the selected open-ocean locations for, from top to bottom, OSI-450, SICCI-25km, and
SICCI-50km in the Arctic (a–c) and the Antarctic (d–f). The unfiltered distribution is shown (no OWF) by combining ice_conc and
raw_ice_conc_values variables. Blue (red) curves and numbers refer to results from winter (summer); the numbers in parenthesis behind
the season denote the count of cases used. Numbers below the season denote the mean SIC and 1 standard deviation (in parenthesis) in
percent SIC. Bin size is 0.5 %. Distributions are normalized to give a total of 1.

status_flag variable, any SIC contaminated by land spillover
effects or with high air temperatures were discarded.

For open water, we find quite similar SIC distribu-
tions around 0 % for all three CDRs for both hemispheres
(Fig. 10). During winter (blue curves) OSI-450 and SICCI-
25km are skewed a bit towards negative SIC in the Arctic
but not in the Antarctic. During summer (red curves) we find
SIC distribution to be skewed to negative SIC for all CDRs
except OSI-450 in the Antarctic. Distributions are generally
more narrow for SICCI-50km than for the other two CDRs.
Figure 12 (a and b, black crosses) illustrates the very similar

accuracies for OSI-450 and SICCI-25km with a mean SIC of
0 % or −0.2 % during summer and of ∼ 0.5 % during winter
in both hemispheres. For SICCI-50km, the accuracy varies
more than for the other two CDRs: summer is ∼−0.5 % and
winter is 0.2 % to 0.5 %. The standard deviation of the mean
SIC (black bars), i.e. the precision, ranges between 1 % and
2 % for all three CDRs. Without exception the precision is
better (smaller standard deviation) in summer than winter.
For both hemispheres, we find that the precision of OSI-450
and SICCI-25km SIC CDRs are similar to each other and
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Figure 11. SIC distribution around SIC= 100 % from the RRDP-2 data set for, from top to bottom, OSI-450, SICCI-25km and SICCI-
50km in the Arctic (a–c) and the Antarctic (d–f). The unfiltered distribution is shown (no threshold at 100 % SIC) by combining ice_conc
and raw_ice_conc_values variables. Black, red and blue curves and numbers refer to all data and data limited to ERA-Interim 2 m-air
temperatures<−5 and<−10 ◦C respectively. The numbers behind the limitation text (e.g. “all”) denote the count of data used; the numbers
below denote the mean SIC and 1 standard deviation (in parenthesis) in percent SIC. Bin size is 0.5 %. Distributions are normalized to give
a total of 1.

poorer than for SICCI-50km, which is in line with the find-
ings in Fig. 8.

For sea ice, we find almost identical SIC distributions
around 100 % for OSI-450 and SICCI-25km for both hemi-
spheres (Fig. 11a, b, and d, e). Distributions for SICCI-
50km are considerably narrower (Fig. 11c, f) and, in com-
parison to OSI-450 and SICCI-25km, have a modal value
closer to 100 %. All three CDRs exhibit a negative bias, i.e.
a modal SIC<100 %. Figure 12c, d further illustrate that
SICCI-50km provides the smallest bias (best accuracy) in
both hemispheres with mean SICs of 99.5 % and 99.3 % for
the Arctic and Antarctic. In addition, SICCI-50km also offers

the smallest SIC standard deviation of the mean (black bars),
i.e. the best precision, of ∼ 2 % and ∼ 3 % for the Arctic and
Antarctic. OSI-450 and SICCI-25km provide a slightly larger
bias with a mean SIC of ∼ 98 % in the Arctic and ∼ 98.5 %
in the Antarctic, which also comes with a higher SIC stan-
dard deviation of the mean: 3.5 % to 4.0 %.

4.2.3 Evaluation of the uncertainties

We computed the mean SIC total uncertainty σtot for OSI-
450, SICCI-25km, and SICCI-50km for exactly the same set
of grid cells as used in Sect. 4.2.2 (Fig. 12, blue bars).
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Figure 12. Summary of histogram statistics from Figs. 10 and 11 for SIC= 0 % (a, b) and SIC= 100 % (c, d) for the Arctic (a, c) and the
Antarctic (b, d). Crosses and black bars denote the mean SIC± 1 standard deviation of the standard error. Red horizontal bars denote the
modal SIC. Blue bars denote the range covered by the mean SIC± 1 standard deviation of the total uncertainty. Letters S and W in (a) and
(b) refer to summer and winter.

For open water, SIC= 0 % (Fig. 12a, b), we find that mean
SIC total uncertainties differ by less than 0.3 % between
OSI-450 and SICCI-25km and take values of ∼ 2 % during
summer and of ∼ 2.5 % during winter. For SICCI-50km, the
mean SIC total uncertainty is smaller than for the other two
CDRs – particularly during summer in the Northern Hemi-
sphere, with ∼ 1.5 % compared to ∼ 2 % in winter. Without
exception mean SIC total uncertainties exceed 1 standard de-
viation of the retrieval errors (compare black and blue bars in
Fig. 12a, b). Also without exception, mean SIC total uncer-
tainties are smaller than 2 standard deviations of the retrieval
errors (not shown).

For sea ice, SIC= 100 % (Fig. 12c, d), we find that mean
SIC total uncertainties for OSI-450 (∼ 3 %) are smaller than
those for SICCI-25km (∼ 3.5 %) in both hemispheres. For
SICCI-50km mean SIC total uncertainties are smaller than
for the other two CDRs – particularly in the Northern Hemi-
sphere, at ∼ 2 % (Fig. 12c). For OSI-450 and SICCI-25km,
mean SIC total uncertainties are smaller than 1 standard de-
viation of the retrieval errors. For SICCI-50km, mean SIC

total uncertainties are comparable to (Fig. 12c) or larger than
(Fig. 12d) 1 standard deviation of the retrieval errors. These
results are in agreement with those introduced in Sect. 4.2.1
and are mainly explained by the frequency channels used
in the three CDRs: 18.7 GHz for SICCI-25km, instead of
19.3 GHz for OSI-450 (less noise contribution from atmo-
spheric water vapour content), and 6.9 GHz for SICCI-50km
(lower sensitivity to atmosphere and surface snow and sea-
ice property variations).

Thus, the results summarized in Fig. 12 indicate that the
uncertainty σtot provided with the three CDRs are slightly
underestimated, especially for OSI-450 for the high sea-ice
concentration range (SIC= 100 %), and are slightly overes-
timated for the low sea-ice concentration range (SIC= 0 %).
The SIC total uncertainty σtot has contributions from the
algorithm uncertainty σalgo and the smearing uncertainty
σsmear. Because the locations for ground-truth estimates are
generally not at the ice edge, the smearing uncertainty term
is close to zero and σalgo dominates the evaluation results
summarized in Fig. 12. As introduced in Sect. 3.5, the algo-
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rithm uncertainty is computed as the standard deviation of
the retrieval error at the dynamically selected training data
samples. For SIC= 100 % cases, the dynamically selected
training samples are spread mostly all over the high sea-ice
concentration regions, and there are thus good odds that the
training samples are representative of the geophysical con-
ditions in the ground-truth data set, and that in turn the re-
ported uncertainties are in agreement with the retrieval er-
rors for SIC= 100 % cases. For SIC= 0 %, the ground-truth
open-water locations are selected just outside the maximum
sea-ice climatology, while we used an expanded version of
this climatology for the selection of the open-water training
data samples (Sect. 3.3 and 3.6). The OW training samples
thus generally correspond to lower-latitude conditions (ocean
surface, and atmosphere conditions) than the ground-truth lo-
cations. For example, training samples may be selected in
regions of more frequent synoptic low-pressure paths than
the conditions that really prevail at the ice edge and where
the ground-truth estimates used in the section are located.
A more developed sea state as well as a wetter atmosphere
contribute to the overestimation of σalgo (hence σtot) by at
maximum 1 % SIC (1 standard deviation) in SIC= 0 % con-
ditions. Finally, we note that the results from Fig. 12 cover
the end of the time period (the AMSR-E and AMSR2 years),
while the maximum ice extent climatology driving the selec-
tion of training samples is computed for almost the whole of
40 years of the sea-ice data record. Trends in sea-ice decline
(in the NH, especially summer) might thus have an amplifi-
cation effect on the overestimation of the uncertainties, as the
location for selecting training samples is increasingly further
away from the sea-ice edge as decades pass.

4.3 Caveats and known limitations

Known limitations of the SIC CDR are listed in this section.
All the aspects listed below apply generally to the other ex-
isting SIC data records based on PMW satellite data. Not all
of these limitations are reflected in the uncertainty fields of
the CDR, as presented below.

The open-water filter (a.k.a. weather filter) implemented in
the new SIC CDR is based on a combination of the frequency
channels around 19 and 37 GHz (Sect. 3.4.2). Although the
filter is efficient at detecting and removing weather-induced
noise (false ice) over open water, it also has the effect of
removing some amount of true low-concentration ice, es-
pecially in the marginal ice zone. Although dynamic tuning
strategies were developed for these new CDRs, users are ex-
plicitly warned to pay close attention to filtered conditions,
especially close to the ice edge. The unfiltered (raw) SIC val-
ues can always be accessed in the field raw_ice_conc_values
(Sect. 4.1, Fig. 6). The effect of the OWF is not included
in the uncertainty variables, which pertain to the unfiltered
(raw) ice concentration values. See also the discussion on
the temporal consistency of the OWF for the three CDRs in
Sect. 4.2.1.

All SIC algorithms based on the passive microwave data
are very sensitive to melt-pond water on top of the ice (Kern
et al., 2016). The radiation emitted at the wavelengths of the
frequency channels comes from a very thin layer at the sur-
face of the melt pond, which does not enable ocean water
(in leads and openings) and meltwater (in ponds) to be dis-
tinguished. The ice_conc variable of the SIC CDRs should
thus hold an estimate of 1 minus the open-water fraction in
each grid cell, irrespective of whether this water is from lead
and openings or ponds. The misinterpretation of meltwater
on top of sea ice as open water is not included in the un-
certainty variables (Q. Yang et al., 2016). The uncertainties
embedded in the files are those for 1 minus the open-water
fraction.

Due to many factors (including smooth surface, absence of
snow, brine content) concentration of thin sea-ice (<30 cm)
is underestimated by most of the PMW SIC algorithms (Cav-
alieri, 1994). A complete, 100 % cover of thin sea ice will be
retrieved with a lower concentration, depending on the thick-
ness (Ivanova et al., 2015). The effect of thin sea ice is not
included in the uncertainty fields of the SIC CDRs.

The SIC data records aim to address needs from a wide
range of users, from the interested general public to climate
modellers and climate services. It was decided to provide in-
terpolated sea-ice concentration values in places where orig-
inal input satellite data were missing, aiming to produce the
most complete daily maps possible. Both temporal and spa-
tial interpolations are used (Sect. 3.6). The locations where
interpolation is used are clearly identified in the status_flag
layer. These interpolated sea-ice concentration values should
generally be used with caution for scientific applications, es-
pecially the values obtained from spatial interpolation. The
uncertainty variables are not interpolated where data were
missing. Days on which no satellite data were available, e.g.
every other day in the SMMR time period, are not inter-
polated and corresponding files are missing from the data
records.

OSI-450 is presented at 25 km grid spacing. However, a
spatial sampling of 25 km does not fully represent the true
spatial resolution of the product since the footprints of the
SMMR, SSM/I, and SSMIS channels used by the algorithms
are coarser (Table 2). The mismatch of grid spacing to the
true resolution of the instrument footprint is taken into ac-
count in the uncertainty model of the OSI SAF CDR and is a
key contribution to the smearing uncertainty (Sect. 3.5). The
footprint of the AMSR-E and AMSR2 channels used in the
ESA CCI CDRs (SICCI-25km and SICCI-50km) are much
more compatible with the 25× 25 km (SICCI-25km) and
50×50 km (SICCI-50km) target grids, so that their grid spac-
ing is closer to the true resolution. The true resolution of the
SICCI-25km CDR might be slightly better than 25× 25 km,
but this grid spacing was retained to ease uptake by users and
comparison with OSI-450.

The radiometric signature of land is similar to that of sea
ice at the wavelengths used for estimating the SIC. Because
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of the large footprints and the relatively high brightness tem-
peratures of land and ice compared to water, the land sig-
nature “spills” into the coastal zone open water and it will
falsely appear as intermediate concentration ice. This land-
spillover effect is corrected for as described in Sect. 3.6.
However, coastal correction procedures are not perfect, and
some false sea-ice remains along some coastlines, espe-
cially for OSI-450 and SICCI-50km because of the larger
footprint of the instruments. By the same token, some true
coastal sea ice might be removed by the coastal correc-
tion scheme. Users are advised to check the values in the
raw_ice_conc_values variable where the SIC estimates be-
fore the final coastal correction step are available. The un-
certainty variables have larger values in the coastal regions
where land spillover effects are detected. See also Sect. 5.2.

Ice resulting from freezing of fresh and brackish waters
does not have the same emissivity as that from seawater. The
retrieval of ice area fraction in these conditions would call
for dedicated tie points (e.g. Ghaffari et al., 2011), which we
did not implement here. In addition to the difficulty of com-
puting dynamic tie points over such small areas, it is unclear
if such dedicated tie points would make a large difference in
the end, because of the combination of many error sources in
these closed water bodies (land spillover, thin sea-ice, larger
atmospheric influence, etc.). A layer in the status_flag vari-
able indicates fresh and brackish water bodies.

5 Discussion, outlook, and conclusions

5.1 Discussion

This paper documents three new sea ice concentration (SIC)
Climate Data Records (CDR). One is from EUMETSAT OSI
SAF (OSI-450) and two are from ESA CCI (SICCI-25km
and SICCI-50km). All three share the same algorithm base-
line, which is both a continuation of the EUMETSAT OSI
SAF SIC approach (Andersen et al., 2006; Tonboe et al.,
2016) and a series of innovations contributed to mostly by
the ESA CCI activities. The three CDRs are a family of data
records that aim to address the GCOS Requirements for the
sea-ice essential climate variables (ECVs) (GCOS-IP, 2016).
The improvements with respect to earlier versions of the
CDRs include (1) using high-quality Fundamental Climate
Data Records (FCDR) as input data (Sect. 2.1), (2) a new
family of self-tuning, self-optimizing SIC algorithms that dy-
namically adjust to the input TB data (Sect. 3.2, and 3.3),
(3) novel noise reduction and filtering approaches (Sect. 3.4),
and (4) per-pixel uncertainty estimates (Sect. 3.5). The prod-
uct data files are designed so that interested users can revert
some of the filtering steps and access the raw output of the
SIC algorithms (Sect. 4.1).

The three CDRs are designed to ensure temporal continu-
ity throughout the almost 40 years of passive microwave data
records. The OSI-450 data set currently covers 1979 to 2015

with a consistent set of frequencies at 19 and 37 GHz. Con-
versely to other CDRs (e.g. Meier et al., 2017 and its two al-
gorithm components bootstrap and NasaTeam), the channels
around 22 GHz are not used for filtering water vapour con-
tamination. The 23.0 GHz channels of the SMMR instrument
have been highly unstable since their launch and eventually
ceased to function in March 1985. This is one of the reasons
why the Meier et al. (2017) data set only starts with SSM/I
F08 on 9 July 1987 as a fully qualified CDR (according to
https://nsidc.org/data/g02202, last access: 1 June 2018). A
key asset of the algorithms we adopted is that they are self-
tuning and self-optimizing to the data, which greatly helps
temporal consistency to be achieved between different satel-
lite missions, both in the past and future (discussed later in
Outlook, Sect. 5.2).

The self-tuning and self-optimizing algorithms also al-
lowed consistent processing of SIC CDRs from the AMSR-
E and AMSR2 instruments. The SICCI-25km is an attempt
at closing the gap in spatial resolution between what can be
achieved from coarse-resolution sensors like SMMR, SSM/I
and SSMIS and the requirements of GCOS for 10–15 km
spatial resolution (GCOS-IP, 2016). The almost 15-year
record of brightness temperature observations from these two
instruments is a key complement to OSI-450.

The decision to produce distinct CDRs, one with SMMR,
SSM/I, and SSMIS and the other two with AMSR-E and
AMSR2 data, is mainly based on the difference in spatial
resolution. Mixing the two types of sensors (coarse resolu-
tion with medium resolution) into a single CDR would re-
quire careful consideration of the mismatch in spatial res-
olution and possibly advanced enhanced resolution methods
(e.g. Long and Daum, 1998; Long and Brodzik, 2016), which
are not used here. It is in any case doubtful whether the re-
sulting single CDR would meet the temporal consistency re-
quirements of many climate applications.

An evaluation of the three CDRs and their uncertainties is
reported upon in Sect. 4.2. Time-series plots document that
the dynamic tuning of the SIC algorithms and of the OWF
perform as expected, and that temporal consistency is mostly
achieved despite the changes of channel frequencies and cal-
ibration between sensors. Based on similar frequency chan-
nels at 19 and 37 GHz, the OSI-450 and SICCI-25km CDRs
achieve similar accuracies, both in the time-series plots of
internal tuning parameters (Sect. 4.2.1) and when validated
against ground-truth (Sect. 4.2.2). Over open water, the re-
trieval accuracy of these two CDRs is as good as 1.5 % to
2 % SIC (1 standard deviation) and without biases. Over con-
solidated sea ice, the retrieval accuracy is somewhat poorer
(3.5 % to 4 % SIC) and has limited low bias (2 % SIC in NH,
1 % in SH). The SICCI-50km uses a 6 GHz frequency chan-
nel instead of 19 GHz. Theoretically 6 GHz is a better chan-
nel for estimating sea-ice concentration since the atmosphere
is more transparent, the influence of error sources like sea-
ice age or snow processes have less influence, and the con-
trast between ocean and ice is larger. This is confirmed in our
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evaluation results. Over open water, the retrieval accuracy of
SICCI-50km is as good as 1 % to 1.5 % SIC (1 standard devi-
ation). Over consolidated sea ice, the accuracy is better than
2.5 % SIC and the bias is limited to below 1 %. The SICCI-
50km is thus the most accurate of our three new CDRs but
also has the coarsest spatial resolution due to the large foot-
print of the 6 GHz channels.

Our evaluation results reveal very similar accuracies in the
northern and southern hemispheres, even though the sea-ice
conditions can be very different. Regarding algorithm per-
formance, the Arctic is more challenging at first glance. At
least two radiometrically different ice types, multi-year ice
and first-year ice, and a pronounced seasonal cycle of sea-ice
and snow properties during summer with regular widespread
occurrence of melt ponds on the ice surface need to be ac-
commodated by the algorithm. Antarctic multi-year ice has
a less well-studied and different radiometric signature than
Arctic multi-year ice, resulting from other summer melt pro-
cesses, e.g. melt ponds occur rarely; one could say it differs
less from that of first-year ice on the one hand. On the other
hand, direct and indirect weather influences, causing an un-
wanted variation in the retrieved sea-ice concentration, have
been quite regional in extent in the Arctic Ocean (largely en-
compassed by land masses), while these have been a com-
mon, widespread phenomenon on Antarctic sea ice (bordered
by oceans and at lower latitudes). Therefore, a very similar
algorithm performance in both hemispheres is not a surprise
and agrees with earlier findings (e.g. Ivanova et al., 2015).
We note that, because they automatically tune their coeffi-
cients (tie points, plane angle θ , etc.) to the training data spe-
cific for each hemisphere, our new algorithms can best adapt
to radiometric properties of sea ice being different in both
hemispheres.

An analysis of the temporal consistency of the open-water
filter (Sect. 4.2.1) also revealed that our dynamic tuning of
the OWF does not perform as optimally on the SICCI-50km
CDR than on SICCI-25km and OSI-450. This is explained
by the larger mismatch in frequency and resolution between
the channels entering the SIC algorithms, and those used in
computing the OWF (19 and 37 GHz only). We note that the
dynamic tuning of the OWF as implemented here secures a
quite stable level for the minimum detectable true SIC, of
the order of 10 % SIC, on average well below the 15 % SIC
threshold commonly used for defining sea-ice extent.

An evaluation of the uncertainties, a key element of the
CDRs, is reported on in Sect. 4.2.3. We compare the un-
certainty values reported in the product files with the re-
trieval error of the SIC field in conditions of known 0 %
and 100 % SIC. Over 100 % SIC, there is a close correspon-
dence between the reported uncertainty and the observed re-
trieval noise for both hemispheres. In open-water conditions,
the uncertainties provided in the CDR product files overes-
timate the observed retrieval noise by a couple of SIC per-
cent (in terms of standard deviation). This slight overestima-
tion is probably due to the use of a buffer zone outside of

the monthly maximum ice climatology extent that dynam-
ically selects the data samples used to train the algorithms
(Sect. 3.3) and derive uncertainties (Sect. 3.5).

5.2 Outlook

The Climate Data Records presented in this manuscript will
be further developed and extended in the context of the EU-
METSAT OSI SAF. A full reprocessing of the OSI-450,
SICCI-25km, and SICCI-50km CDRs is committed to by
OSI SAF (version 3 of the CDRs) and should happen in
2021. It will use updated versions of the FCDRs – if avail-
able – and the new ERA5 atmosphere reanalysis from the EU
C3S (Hersbach and Dee, 2016). At time of writing, no radi-
cal change of algorithms and processing steps is foreseen, but
our paper identifies several improvements and evolutions that
would be beneficial for these upcoming versions, and these
are briefly described below.

Although the ESA Climate Change Initiative Sea Ice
projects went far in the characterization of the impact that
melting and melt ponds have on sea-ice concentration re-
trievals from passive microwave data (Kern et al., 2016), the
question on how to limit and best convey the increased uncer-
tainty to users will benefit from further efforts. Results of an
intercomparison between the data set of melt-pond fraction,
sea-ice concentration and net sea-ice surface fraction used in
Kern et al. (2016) and the three CDRs presented in this pa-
per as well as other available sea-ice concentration products,
including those based on NASA-Team and bootstrap algo-
rithms, will be reported in a forthcoming article.

The uncertainty model presented here is already a signif-
icant improvement over that used in the previous version of
the SIC CDR (Tonboe et al., 2016). Nonetheless, additional
research is needed to better quantify the uncertainties and
validate that they are fit for purpose. Since the way we derive
uncertainties is directly linked to the way we select train-
ing data samples, it could be investigated whether selecting
training samples closer to the ice edge would improve the un-
certainty values and, for example, reduce the slight overesti-
mation of uncertainties at SIC= 0 % conditions documented
in Sect. 4.2.3. Another challenging topic is the quantification
of cross-correlation scales (both in the temporal and spatial
dimensions) necessary to fully aggregate such CDRs at the
scales relevant for evaluation of models or higher-level cli-
mate indicators (Bellprat et al., 2017).

Despite being from all seasons and in both hemispheres,
the validation results presented in this paper cover 0 %
and 100 % SIC conditions, but not the intermediate range
found in the marginal ice zone due to the lack of high-
quality validation data. Results of the evaluation of the three
CDRs with independent data, i.e. ship-based visual obser-
vations of sea-ice cover and sea-ice area fraction derived
from high-resolution optical satellite imagery, have been re-
ported in the Product Validation and Intercomparison Re-
port (PVIR; available from http://cci.esa.int, last access:

www.the-cryosphere.net/13/49/2019/ The Cryosphere, 13, 49–78, 2019

http://cci.esa.int


74 T. Lavergne et al.: Version 2 of the EUMETSAT OSI SAF and ESA CCI SIC CDRs

1 September 2018) and will also be published in forthcom-
ing articles. These will also include an intercomparison of
time series of the sea-ice area (SIA) and extent (SIE) derived
from the three CDRs and from other sea-ice concentration
products.

From the early assessment of the new CDRs presented
here, we can already outline a number of algorithm devel-
opments that have the potential to further improve the ac-
curacy of future SIC estimates based on passive microwave
data, both in climate and operational applications. The new
self-tuning, self-optimizing algorithms introduced in this pa-
per are currently limited to 3-D TB spaces. This is because
the optimization of the projection plane is handled via a ro-
tation angle along a 3-D axis, a geometrical concept that is
difficult to upscale to more dimensions. The generalization
of this optimization to n-D (where n could be any subset of
the channels available on a given passive microwave imager)
would open to assess all possible TB channel combinations in
a systematic manner and maybe unveil algorithms to achieve
even better accuracy than the 3-D ones used here. By the
same token, it should be investigated whether the concept of
a consolidated ice curve (as opposed to an ice line) could
be better embedded in SIC algorithms in the future instead
of being a correction step applied a posteriori as is the case
in our CDRs. A third algorithm development to be investi-
gated is the generalization of the concept of open-water fil-
ters (a.k.a. weather filters) to 3-D or even n-D, so that the
OWFs are always tuned and computed using the same TB
channels as the SIC. This development has the potential to
improve the temporal consistency of the OWF at low SIC val-
ues across changes of wavelengths and calibration or when
using TB channels other than 19 and 37 GHz. Finally, re-
search is needed to assign a true spatial resolution to SIC
fields computed from combinations of n TB channels, which
are themselves at different spatial resolutions. Some knowl-
edge is embedded in our parameterization of σsmear, but it is
currently not enough to choose and fully justify a grid spac-
ing for SIC data records. In any case and even after almost
40 years of routinely available passive microwave observa-
tions of the polar regions, the underlying algorithms can still
be improved to yield improved accuracy and there is scope
for continued research and development in the field.

Other steps in the processing chain can further be im-
proved upon, e.g. the land spillover correction schemes. In
Sect. 3.6 we described how land spillover was corrected for
in two steps, first through a physically based algorithm on
swath TB data (adapted from Maass and Kaleschke, 2010),
followed by a statistically based correction of gridded SICs
(adapted from Cavalieri et al., 1999). Several factors can have
led to the swath-based correction to not be enough. For exam-
ple, the method relies heavily on the accurate geolocation of
the TB measurements; however its uncertainty for the SSM/I
and SSMIS instrument is known to be large (Poe et al., 2008)
and is not corrected for in the current version of the FCDR
(R3) we used (Fennig et al., 2017). We used approximated

iFoVs weighting functions instead of eFoVs (see Sect. 2.1)
when convolving antenna pattern with the land mask, thus
neglecting the effect of the measurement integration period.
Finally, strategies to avoid gridding land-contaminated FoVs
when building Level 3 maps might help in the future. It will
also be beneficial to use objective high-resolution SIC maps
from coastal regions to tune the various thresholds embed-
ded in the statistically based correction. To improve further
on the land spillover correction will be an objective for up-
coming versions of the CDRs.

Another development for using such SIC CDRs to evalu-
ate models and perform Data Assimilation would be the def-
inition and uptake of observation operators (a.k.a. satellite
simulators, e.g. Kaminski and Mathieu, 2017). Once the re-
maining systematic errors (such as underestimation of very
thin ice, impact of melt-pond water) have been described and
quantified, the next step is for the Earth observation science
community to define observation operators. These operators
are typically parametric formulations that express the quan-
tity retrieved from EO techniques (in our case the sea-ice
concentration values in the CDR) as a combination of physi-
cal variables in the model world (e.g. sea-ice area fraction,
thickness of sea-ice categories, and area coverage of melt
pond). We advocate these operators to be built in a step-
wise, pragmatic manner (Lavergne, 2017). This development
should happen in complement to building more end-to-end
satellite simulators that aim to link the physical variables in
the model world directly to satellite radiances.

Thanks to using the C-band channels (4–8 GHz) the
SICCI-50km CDR exhibits outstanding sea-ice concentra-
tion retrieval accuracy, both at low- and high-concentration
range. The usability of this CDR can, however, be chal-
lenged by its rather coarse resolution (the 6 GHz channels
of AMSR-E have a iFoV of 75× 43 km (Table 2) and the
CDR is presented on a 50 km grid), which is a direct con-
sequence of the limited antenna diameter of the AMSR-E
(2.0 m) and AMSR2 (2.1 m) instruments. Our results fully
support that a passive microwave mission measuring at the C-
band frequency, and carrying a large-enough antenna to en-
able ground resolutions better than 15 km (at C-band) would
be a clear asset for all-weather, global, daily covering sea-ice
concentration mapping for operational applications. At the
time of writing, such a satellite mission is under study as a
High Priority Candidate Mission for the European Union’s
Copernicus Space Component Expansion: the Copernicus
Imaging Microwave Radiometer (CIMR, https://cimr.eu, last
access: 1 September 2018).

A key requirement of GCOS for addressing the needs of
the climate modelling community, as well as the Climate
Information Services such as the EU Copernicus Marine
Environment Monitoring Service (CMEMS, http://marine.
copernicus.eu, last access: 1 November 2018) and Coperni-
cus Climate Change Service (C3S, http://climate.copernicus.
eu, last access: 1 November 2018), is the seamless extension
of the CDRs in the context of operational services. These
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operational services aim to have the best temporal consis-
tency with the CDRs, but still may have to rely on differ-
ent data streams. They are referred to as Interim Climate
Data Records (ICDR) because they are meant as a tempo-
rary extension until a full reprocessing of the CDRs is per-
formed (W. Yang et al., 2016). For the SIC variable, both
the EUMETSAT OSI SAF CDR of Tonboe et al. (2016) and
the NOAA/NSIDC CDR (since late 2017, version 3) are ex-
tended daily by such ICDR. We are naturally working to-
wards starting an operational ICDR for our new CDRs, tenta-
tively by late 2018, with a 16 days latency. The algorithm de-
velopments will also be introduced to the operational stream
of sea-ice products from the EUMETSAT OSI SAF.

Aside from the technical aspects of reliably running the
CDR processing chains on a daily basis, a major challenge
that all SIC CDR data producers now face is the end of
life for the U.S. Defense Meteorological Satellite Program
(DMSP), which has been the workhorse for virtually all sea-
ice CDRs since SSM/I F08 in 1987 (Table 2 and Fig. 1). At
the time of writing, the Japanese AMSR2 instrument is al-
ready past its design lifetime (5 years, launched mid-2012),
with no committed successor. For the continuation of the
new OSI SAF SIC CDR, we are investigating the quality of
the Microwave Radiation Imager (MWRI) on board China’s
Feng-Yun 3 (FY3) satellites. Preliminary results are encour-
aging and, when consolidated, will be presented in a follow-
up paper. The first satellite of the European Polar System
Second Generation (EPS-SG) series to carry a Microwave
Imager (MWI) is scheduled for launch in 2023. It can be
used to further extend the SIC CDR up until the late 2040s. It
is noticeable that EPS-SG MWI implements quite a different
channel frequency for Ka-band (26.5–40 GHz): 31.4 GHz in-
stead of 36–37 GHz for SSM/IS and AMSRs (Table 2). How-
ever, because our algorithms self-adapt to the data and their
calibration, the implementation with MWI should be possi-
ble. The impact of using 31.4 GHz instead of 36–37 GHz for
sea-ice concentration mapping still needs to be addressed.

5.3 Conclusions

Long-term consistency, traceability, and an evaluation and
documentation of uncertainties are arguably the three ma-
jor properties of any climate-data record. In this contribu-
tion, we have described how these requirements are reflected
by the algorithm underlying the three new sea-ice concentra-
tion climate-data records OSI-450, SICCI-25km, and SICCI-
50km.

Long-term consistency is achieved by developing an al-
gorithm that dynamically adjusts to changing environmental
conditions and changing satellite sensors. In particular, ap-
plying the same algorithm to microwave products based on
different frequencies and satellites allows users to combine
the advantages of the length of the record of the OSI-450
product with the high true spatial resolution of the SICCI-
25km product and/or the low-noise product SICCI-50km.

Traceability of the algorithm and the resulting climate-
data records is achieved by a combination of two approaches.
First, the final products contain substantial information on
the impact of the various processing steps. For example, at
every time step they include per-pixel information on the im-
pact of possible filtering. Second, the algorithm and the prod-
ucts are embedded into an operational context. This guaran-
tees ease of a long-term maintenance of these products, but
in particular establishes clear rules on version tagging, doc-
umentation and availability of the underlying code, which
allows other researchers to easily build on our work and to
develop it further.

Uncertainties are systematically documented in the fi-
nal products and have carefully been evaluated. All prod-
ucts contain per-pixel information on uncertainties arising
from the algorithm itself at every time step (e.g. sensor
noise or residual geophysical noise) and the smearing un-
certainty from spatial remapping. This information is partic-
ularly helpful for data-assimilation purposes. The evaluation
of uncertainties carried out in this paper provides some initial
information on the remaining random per-pixel uncertainty,
which can be used as an estimate of observational uncer-
tainty, for example during model evaluation or data assim-
ilation. We find in particular that our product has a long-term
stable zero bias arising from the dynamical retuning of the
tie points.

We hope that by explicitly addressing the three require-
ments of a climate-data record, our three new sea-ice concen-
tration records and the underlying algorithm will be a helpful
resource for the climate-research community.

Data availability. The three SIC CDRs presented
in this study are publicly available and can be ac-
cessed by following the DOIs https://doi.org/10.15770/
EUM_SAF_OSI_0008 (Toudal Pedersen et al., 2017a),
https://doi.org/10.5285/f17f146a31b14dfd960cde0874236ee5
(Toudal Pedersen et al., 2017b), and https://doi.org/10.5285/
5f75fcb0c58740d99b07953797bc041e (Toudal Pedersen et al.,
2017c); see also Table 1.
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Python language and its modules (numpy, scipy, matplotlib, pytroll,
etc.).

The SMMR, SSM/I, and SSMIS FCDR (R3) were accessed
from the EUMETSAT CM SAF (http://www.cmsaf.eu/, last access:
1 June 2018). Karsten Fennig and Marc Schröder, both at DWD,
helped to make the best use of this data. The AMSR-E FCDR was
accessed from NSIDC and the AMSR2 data from JAXA. ECMWF
ERA-Interim was accessed from the MARS archive.

This study and the development of the three new SIC CDRs
were funded by EUMETSAT (through the 2nd Continuous Devel-
opments and Operation Phase of OSI SAF) and ESA (through the
Climate Change Initiative SeaIce_cci project).
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