Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
TC | Volume 13, issue 3
The Cryosphere, 13, 815–825, 2019
https://doi.org/10.5194/tc-13-815-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 13, 815–825, 2019
https://doi.org/10.5194/tc-13-815-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 07 Mar 2019

Research article | 07 Mar 2019

Increased Greenland melt triggered by large-scale, year-round cyclonic moisture intrusions

Marilena Oltmanns et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Marilena Oltmanns on behalf of the Authors (07 Feb 2019)  Author's response    Manuscript
ED: Publish as is (12 Feb 2019) by Xavier Fettweis
Publications Copernicus
Download
Short summary
By combining reanalysis, weather station and satellite data, we show that increases in surface melt over Greenland are initiated by large-scale precipitation events year-round. Estimates from a regional climate model suggest that the initiated melting more than doubled between 1988 and 2012, amounting to ~28 % of the overall melt and revealing that, despite the involved mass gain, precipitation events are contributing to the ice sheet's decline.
By combining reanalysis, weather station and satellite data, we show that increases in surface...
Citation