Articles | Volume 14, issue 2
https://doi.org/10.5194/tc-14-445-2020
https://doi.org/10.5194/tc-14-445-2020
Research article
 | 
05 Feb 2020
Research article |  | 05 Feb 2020

Soil moisture and hydrology projections of the permafrost region – a model intercomparison

Christian G. Andresen, David M. Lawrence, Cathy J. Wilson, A. David McGuire, Charles Koven, Kevin Schaefer, Elchin Jafarov, Shushi Peng, Xiaodong Chen, Isabelle Gouttevin, Eleanor Burke, Sarah Chadburn, Duoying Ji, Guangsheng Chen, Daniel Hayes, and Wenxin Zhang

Related authors

Patterns and rates of soil movement and shallow failures across several small watersheds on the Seward Peninsula, Alaska
Joanmarie Del Vecchio, Emma R. Lathrop, Julian B. Dann, Christian G. Andresen, Adam D. Collins, Michael M. Fratkin, Simon Zwieback, Rachel C. Glade, and Joel C. Rowland
Earth Surf. Dynam., 11, 227–245, https://doi.org/10.5194/esurf-11-227-2023,https://doi.org/10.5194/esurf-11-227-2023, 2023
Short summary
Arctic aquatic graminoid tundra responses to nutrient availability
Christian G. Andresen and Vanessa L. Lougheed
Biogeosciences, 18, 2649–2662, https://doi.org/10.5194/bg-18-2649-2021,https://doi.org/10.5194/bg-18-2649-2021, 2021
Short summary
UAS LIDAR MAPPING OF AN ARCTIC TUNDRA WATERSHED: CHALLENGES AND OPPORTUNITIES
A. D. Collins, C. G. Andresen, L. M. Charsley-Groffman, T. Cochran, J. Dann, E. Lathrop, G. J. Riemersma, E. M. Swanson, A. Tapadinhas, and C. J. Wilson
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIV-M-2-2020, 1–8, https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-1-2020,https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-1-2020, 2020

Related subject area

Discipline: Frozen ground | Subject: Frozen ground hydrology
Brief communication: Mountain permafrost acts as an aquitard during an infiltration experiment monitored with electrical resistivity tomography time-lapse measurements
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Giulia Zuecco, Luca Carturan, and Matteo Zumiani
The Cryosphere, 17, 1601–1607, https://doi.org/10.5194/tc-17-1601-2023,https://doi.org/10.5194/tc-17-1601-2023, 2023
Short summary
Towards accurate quantification of ice content in permafrost of the Central Andes – Part 1: Geophysics-based estimates from three different regions
Christin Hilbich, Christian Hauck, Coline Mollaret, Pablo Wainstein, and Lukas U. Arenson
The Cryosphere, 16, 1845–1872, https://doi.org/10.5194/tc-16-1845-2022,https://doi.org/10.5194/tc-16-1845-2022, 2022
Short summary
Impact of lateral groundwater flow on hydrothermal conditions of the active layer in a high-Arctic hillslope setting
Alexandra Hamm and Andrew Frampton
The Cryosphere, 15, 4853–4871, https://doi.org/10.5194/tc-15-4853-2021,https://doi.org/10.5194/tc-15-4853-2021, 2021
Short summary
New insights into the drainage of inundated ice-wedge polygons using fundamental hydrologic principles
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Bob Busey, Sofia T. Avendaño, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, Cathy J. Wilson, and Katrina E. Bennett
The Cryosphere, 15, 4005–4029, https://doi.org/10.5194/tc-15-4005-2021,https://doi.org/10.5194/tc-15-4005-2021, 2021
Short summary
Soil infiltration characteristics and pore distribution under freezing–thawing conditions
Ruiqi Jiang, Tianxiao Li, Dong Liu, Qiang Fu, Renjie Hou, Qinglin Li, Song Cui, and Mo Li
The Cryosphere, 15, 2133–2146, https://doi.org/10.5194/tc-15-2133-2021,https://doi.org/10.5194/tc-15-2133-2021, 2021
Short summary

Cited articles

Aas, K. S., Martin, L., Nitzbon, J., Langer, M., Boike, J., Lee, H., Berntsen, T. K., and Westermann, S.: Thaw processes in ice-rich permafrost landscapes represented with laterally coupled tiles in a land surface model, The Cryosphere, 13, 591–609, https://doi.org/10.5194/tc-13-591-2019, 2019. 
Abolt, C. J., Young, M. H., Atchley, A. L., and Harp, D. R.: Microtopographic control on the ground thermal regime in ice wedge polygons, The Cryosphere, 12, 1957–1968, https://doi.org/10.5194/tc-12-1957-2018, 2018. 
Andresen, C. G. and Lougheed, V. L.: Disappearing arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65 year period (1948–2013), J. Geophys. Res., 120, 1–14, https://doi.org/10.1002/2014JG002778, 2015. 
Andresen, C. G., Lara, M. J., Tweedie, C. T., and Lougheed, V. L.: Rising plant-mediated methane emissions from arctic wetlands, Glob. Change Biol., 23, 1128–1139, https://doi.org/10.1111/gcb.13469, 2017. 
Avis, C. A., Weaver, A. J., and Meissner, K. J.: Reduction in areal extent of high-latitude wetlands in response to permafrost thaw, Nat. Geosci., 4, 444–448, https://doi.org/10.1038/ngeo1160, 2011. 
Download
Short summary
Widely-used land models project near-surface drying of the terrestrial Arctic despite increases in the net water balance driven by climate change. Drying was generally associated with increases of active-layer depth and permafrost thaw in a warming climate. However, models lack important mechanisms such as thermokarst and soil subsidence that will change the hydrological regime and add to the large uncertainty in the future Arctic hydrological state and the associated permafrost carbon feedback.