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Abstract. An optimal estimation method for simultane-
ously determining both basal slipperiness and basal topog-
raphy from variations in surface flow velocity and topogra-
phy along a flow line on ice streams and ice sheets is pre-
sented. We use Bayesian inference to update prior statistical
estimates for basal topography and slipperiness using sur-
face measurements along a flow line. Our main focus here
is on how errors and spacing of surface data affect estimates
of basal quantities and on possibly aliasing/mixing between
basal slipperiness and basal topography. We find that the ef-
fects of spatial variations in basal topography and basal slip-
periness on surface data can be accurately separated from
each other, and mixing in retrieval does not pose a serious
problem. For realistic surface data errors and density, small-
amplitude perturbations in basal slipperiness can only be re-
solved for wavelengths larger than about 50 times the mean
ice thickness. Bedrock topography is well resolved down to
horizontal scale equal to about one ice thickness. Estimates
of basal slipperiness are not significantly improved by accu-
rate prior estimates of basal topography. However, retrieval
of basal slipperiness is found to be highly sensitive to un-
modelled errors in basal topography.

1 Introduction

Indirect inference of basal shear stress distributions of ice
streams from measurements of surface data has been used
successfully in the past to study the role of basal conditions
in controlling the flow of ice streams (MacAyeal, 1992, 1993;
MacAyeal et al., 1995; Vieli and Payne, 2003; Joughin et al.,
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2004, 2006). Simultaneous retrieval of both basal topogra-
phy and basal lubrication was done byThorsteinsson et al.
(2002), and a Bayesian framework for surface-to-bed inver-
sion was outlined byGudmundsson(2004). To date, limited
attention has been paid to some more general aspects of sur-
face inversion on glaciers. For example it remains unclear
how the accuracy of estimates of basal quantities is affected
by the spatial distribution of surface measurements and mea-
surement errors. Possible mixing effects, such as the effects
of basal topography on retrieved slipperiness distributions
have also not received much attention.

The aim of this paper is to clarify the effects of data den-
sity and data quality on indirect estimates of basal topogra-
phy and basal slipperiness on ice streams. We do this by con-
sidering three different aspects of the retrieval, 1) errors due
to mixing between basal topography and basal slipperiness
in retrieval and mixing between different frequency compo-
nents (mixing errors), 2) the spatial and frequency resolution
of the retrieval, and 3) the number of resolved basal quanti-
ties per measurement site at the surface.

We use a Bayesian approach to this inverse problem and
determine the bedrock profile (b(x)) and the spatial slip-
periness distribution (c(x)) which maximise the conditional
probabilityP(b, c|s, u,w), wheres(x), u(x), andw(x) are
the surface topography, and the horizontal and vertical sur-
face velocity component, respectively. The forward model
is based on perturbation solutions to the full Stokes system
(Gudmundsson, 2003). Consequently our results are only
strictly valid in the limiting case of linearised flow pertur-
bations. Numerical estimates of the strengths of non-linear
effects in the forward model can be found inRaymond and
Gudmundsson(2005).
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The method used here differs in a number of aspects from
previous work done by other authors on the surface-to-bed
inversion problem on glaciers and ice sheets. We formally
introduce prior information about basal properties and use
the surface measurements in combination with the prior in-
formation to give an updated estimate of basal properties.
This new estimate of basal properties is given in terms of a
Gaussian probability density function defined through a max-
imum a posteriori (MAP) solution and its covariance. In the
sense that the solution maximises the conditional probability
P(b, c|s, u,w), it can be regarded as an optimal estimate of
basal properties. A further example for optimal estimation in
ice sheet modelling can be found in (Arthern and Hindmarsh,
2003).

Although not always stated explicitly, some sort of a priori
expectation about “sensible” basal properties has been used
in most, if not all, previous work. For example the particular
minimising norm used byTruffer (2004) reflects the reason-
able expectation that basal properties are in some ways spa-
tially correlated and that surface data can only be expected to
give information about basal properties over restricted set of
spatial scales.

As pointed out by (MacAyeal et al., 1995), for most inverse
problems direct minimisation of the misfit between measured
and modelled data does not always lead to a satisfactory so-
lution. In the control method introduced byMacAyeal(1993)
and used by number of other authors (e.g.,Vieli and Payne,
2003; Joughin et al., 2004; Larour et al., 2005), this prob-
lem is avoided by starting with an initial guess judged to be
reasonable by the modeller and by not fully minimising the
misfit between measured and modelled data. Not fully min-
imising the misfit is a way of ensuring that the solution norm
does not grow beyond bounds. In effect this limits the set
of admissible solutions and can be thought of as a form of a
constraint on the solution.

Although hitherto not commonly used in glaciology, the
Bayesian approach to inverse problems applied here is of-
ten used to solve geophysical inverse problems, and we refer
the reader to books byMenke(1989), Rodgers(2000), and
Tarantola(2005) for a general description. Bayesian inver-
sion is a statistical inference method where indirect measure-
ments of some quantity are used in combination with earlier
estimates of that quantity to arrive at a new and improved es-
timate. The estimate is optimal in the sense that it maximises
the conditional probabilityP(x|y) wherex is the quantity to
be estimated, andy are indirect measurements ofx. The in-
direct measurementsy of x are related tox throughy=f (x)

wheref is referred to as the forward model. Here, in our
particular case, the indirect measurements (y) are measure-
ments of velocity and topography along the upper surface of
a glacier, the quantityx to be estimated is basal topography
and basal slipperiness.

2 Theoretical framework

We consider the problem of determining basal slipperiness
and basal topography from measurements of surface topog-
raphy and surface velocity on glaciers. The forward prob-
lem consists in solving the full set of the linear momen-
tum equationsσij,j+fi=0, the angular momentum equations
σij−σji=0, and the incompressibility conditionvi,i=0 for
a linear media wherėεij=τij/(2η) and for a linear sliding
law ub=cτb. In these equationsσij are the elements of the
Cauchy stress tensor,fi the elements of the body force,vi the
velocity components,̇εij are strain rates,τij are deviatoric
stresses,η the ice viscosity,ub the basal sliding velocity,τb

the basal shear stress, andc the basal slipperiness. In addition
to these equations we have the kinematic boundary condi-
tions at the upper and lower boundaries. We consider steady-
state conditions and ignore accumulation and ablation.

The model domain is that of a slightly perturbed uniformly
inclined slap with periodic boundary conditions. The pertur-
bations that we consider here are perturbations in basal to-
pography and basal slipperiness. Unless otherwise specified,
the amplitude of a basal topography perturbation is given
as a fraction of the mean ice thickness. Correspondingly,
the amplitude of a basal slipperiness perturbation is given
as a fraction of the mean basal slipperiness. For example, a
(fractional) basal slipperiness perturbation with an amplitude
equal to 0.1 corresponds to a 0.1c̄ perturbation in basal slip-
periness, wherēc is the mean basal slipperiness. We have
ūb=c̄τ̄b whereūb andτ̄b are the mean basal sliding velocity
and the mean basal shear stress, respectively.

2.1 Notation

Measurements are available at discrete points, and we refer
to the set of all surface measurement values as the measure-
ment vector. When referring to this (finite) set of surface
measurements, the corresponding vectors are written in bold
face.

The variables to be estimated are the vectorsb andc giving
the bed topography and basal slipperiness along the profile.
We lump these vectors together into one system state vector
x and, think ofx as consisting of two subvectorsx1 andx2
wherex1=b andx2=c. Hencex=(b, c)H , whereH denotes
the Hermitian transpose. We use the Hermitian transpose be-
cause the inversion is done in Fourier space where all vari-
ables are complex.

Surface data is lumped together into the measurement vec-
tor y. The set of surface data considered here are measure-
ments of surface topography (s), and the horizontal and ver-
tical velocity componentsu andw, respectively. For nota-
tional convenience we splity into three subvectors and write
y1=s, y2=u, y3=w. Hencey=(s, u, w)H . We also write
ε1=εs , ε2=εu, andε3=εw, whereεs , εu, andεw are the cor-
responding surface measurement errors.
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The set of all parameters entering the problem that are not
solved for as a part of the inversion procedure is denoted by
p. These parameters include, for example, those related to
ice rheology.

A tilde above a quantity denotes an a priori estimate while
a hat above a quantity denotes an a posteriori estimate. Thus
x is the true system state whilẽx, andx̂ are the a priori and
the a posteriori estimates, respectively. Measurement val-
ues are denoted by a hat above the corresponding quantity.
We write for examplês=s+εs whereŝ is the surface mea-
surement vector,s is the true surface andεs the error in the
surface measurement.

2.2 Linear forward problem

The relationship between surface measurements and basal
variables is written as ŝ

û

ŵ

 = f (b, c, p) +

 εs

εu

εw

 , (1)

wheref is the forward model. We have assumed here that
the forward model is perfect in the sense that it correctly de-
scribes the relationship between basal (x) and surface (y)
fields when exact estimates of model parameters (p) and
basal quantities are available.

In Fourier space the relationship between horizontal and
vertical surface velocity components (u andw), surface to-
pography (s) and the basal variablesb andc can be described
through transfer functions. Here we use the transfer func-
tions given byGudmundsson(2003). Surface and bedrock
variables are related through

yi =
yi Txj

xj , (2)

where the summation convention is used, andyi Txj
are trans-

fer functions. It is useful to use extended transfer functions,
defined as

yi Tx = (yi Tb
yi Tc), (3)

These matrices have the dimensionsm×2n wheren is the
number of locations along the bedline at whichc andb is to
be estimated, andm is the number of measurement sites at
the surface wheres, u andw have been measured.

In general, no notational difference is made between the
same function in spatial and frequency domain. In the dis-
crete case, the forward Fourier transform of the correspond-
ing measurement vectors is given by Fs where F is the
unitary discrete Fourier transform matrix. The discrete for-
ward Fourier transform of the covariance matrixC is given
by FCFH whereH denotes the Hermitian transpose.

2.3 Description of errors

Covariance matrices are denoted by the upper case letterC.
The covariance matrices considered here will almost all be

error covariance matrices, where the expectation value op-
erator is taken about the true value of some quantity. The
error in surface topography measurements is, for example,
described through the covariance matrix

Csŝ =< (ŝ − s)(ŝ − s)H >, (4)

or simply as

Csŝ =< εsε
H
s > . (5)

We assume that measurement errors are normally distributed
and uncorrelated.

The error in the prior estimate is described by the covari-
ance of the ensemble of states about the prior state

Cxx̃ =< (x − x̃)((x − x̃)H ) > . (6)

We assume that the prior estimates of bed topography and
basal slipperiness are mutually uncorrelated and writeCxx̃

on the form

Cxx̃ =

[
< (b − b̃)(b − b̃)H > 0

0 < (c − c̃)(c − c̃)H >

]
. (7)

We know of no studies were the spatial correlation in basal
topography or basal slipperiness have been estimated. It
seems, however, unlikely that basal topography and basal
slipperiness are spatially uncorrelated. A reasonable model
for the prior basal topography covariance

C
bb̃

=< (b − b̃)(b − b̃)H >, (8)

is a stationary first-order auto-regressive process (Box et al.,
1994) where the prior estimate of the basal topography at
locationi is related to that at locationi−1 through

b̃i = φ
b̃
b̃i−1 + ε

b̃
, (9)

whereε
b̃

is uncorrelated with varianceσ 2. It follows (Box
et al., 1994) that the elements of the covariance matrixC

bb̃
are

[C
bb̃

]ij = σ 2
b̃

e−|i−j |/λ
b̃ , (10)

where the decay length scaleλ
b̃

is related toφ
b̃

through

λ
b̃

= −1/ ln φ
b̃
, (11)

and the variance is

σ 2
b̃

= σ 2/(1 − φ2
b̃
). (12)

The two parametersλ
b̃

andσ 2
b̃

define the covariance model.
We refer toσ

b̃
as the error in prior basal topography. In what

follows this error will usually be defined in terms of the mean
ice thickness̄h. For example, for a 10 % error in prior basal
topography we haveσb=0.1h̄. Do to the to lack of corre-
sponding studies it is difficult to give any well justified es-
timates forλ

b̃
. Over spatial scales where the surface data

contains enough information about basal properties for them
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Fig. 1. Examples for retrieval of basal topography(a) and basal
slipperiness(b). Shown in black are the true basal perturbations.
The blue lines are the retrieved profiles using Eq. (17). Lines in red
show the total retrieval error estimate defined as the square root of
the diagonal elements of theCxx̂ covariance matrix (Eq.18). The
lines in cyan show the a priori retrieval error (see Eq.24).

the be well resolved, the value ofλ
b̃

has little or no effect on
the retrieval. Over spatial scales where the surface data does
not lead to any significant improvements in the prior estimate
of basal properties, the value ofλ

b̃
, on the other hand, signif-

icantly affects the spatial correlation (“smoothness”) of the
retrieval. With the exception of the results shown in Fig. 1,
which is an illustration of one particular synthetic inversion
experiment, all the results given below are not affected by the
exact value ofλ

b̃

An identical model is used for the prior basal slipperiness
covariance

Ccc̃ =< (c − c̃)(c − c̃)H >, (13)

as for the basal topography, and the corresponding model pa-
rameters are denoted byσc̃ andλc̃. A 10 % error in basal
slipperiness corresponds toσc̃=0.1c̄.

One of the reasons for using this model for the prior co-
varianceCxx̃ is that analytical expression for its inverse
(C−1

xx̃
) and its Fourier transform (FCxx̃FH ) can easily be

determined (Box et al., 1994). Cxx̃ is the only full covari-
ance matrix entering as an input variable to the problem, and
having analytical expressions for its inverse, and its Fourier
transform, significantly speeds up the inversion procedure.

The retrieval error is described through the covariance ma-
trix

Cxx̂ =< (x − x̂)(x − x̂)H > . (14)

In general we expectCxx̂ to be a full covariance matrix and
the estimates of basal topography and basal slipperiness to
be correlated.

2.4 Inverse problem

The retrieval (̂x) is a function of surface data vectors (ŝ, û,
ŵ), the prior estimate of the system state (x̃), and the set of
estimated model parameters (p̂), that is

x̂ = x̂(ŝ, û, ŵ, x̃, p̂). (15)

We seek to determine a system state that maximises the con-
ditional probabilityP(b, c|u, v, w). Using Bayes’ theorem
this probability can be written as

P(b, c|u, v, w) = P(b, c)P (s|b, c)P (u|b, c) (16)

P(w|b, c)P (s, u, w)−1

whereP(b, c) is the prior estimate of basal properties.
Standard arguments show that the maximum a posteriori

(MAP) estimate of the system state is given by(
b̂

ĉ

)
= Cxx̂(sTH

x C−1
sŝ

ŝ +
uTH

x C−1
uû

û (17)

+
wTH

x C−1
wŵ

ŵ + C−1
xx̃

x̃)

where

C−1
xx̂

=
sTH

x C−1
sŝ

sTx +
uTH

x C−1
uû

uTx (18)

+
wTH

x C−1
wŵ

wTx + C−1
xx̃

.

Expression Eq. (17) can be rearranged to give(
b̂

ĉ

)
=

(
b̃

c̃

)
(19)

+ Cxx̂(sTH
x C−1

sŝ
(ŝ −

sTx x̃)

+
uTH

x C−1
uû

(û −
uTx x̃)

+
wTH

x C−1
wŵ

(ŵ −
wTx x̃)).

2.5 Error and sensitivity analysis

Linearising Eq. (15) shows that the difference between the
estimate of the system state (x̂) and the true system state (x)
is given by

x̂ − x = (x̂Ax − 1)(x − x̃) +
x̂Ap(p − p̂) +

x̂Gyi
εi, (20)

where

x̂Ax =
∂x̂

∂x
, (21)
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is the sensitivity of the retrieval (x̂) to the true system state
(x), and

x̂Ap =
∂x̂

∂p
, (22)

is the sensitivity of the retrieval to forward model parameters,
and

x̂Gyi
=

∂x̂

∂yi

, (23)

is the sensitivity of the retrieval to surface data withy1=s,
y2=u, y3=w.

The first term on the right-hand side of expression Eq. (20)
is the retrieval error due to inaccuracies in the prior. The
corresponding covariance matrix is

Cx̂x̃ = (x̂Ax − 1)Cxx̃(x̂Ax − 1)H . (24)

We refer to this error component as the “prior retrieval error”,
εr .

The second term on the right-hand side of expression
Eq. (20) is the retrieval error due to errors in the forward
model parameters and the sensitivity of the retrieval to the
forward model parameters. We refer to this error compo-
nent as the “forward-model parameter retrieval error”,εf .
Here we assume that errors in forward model parameters are
small. If not, the corresponding model parameters should be
included as a part of the system state.

The third term on the right-hand side of Eq. (20) is the
retrieval error due to measurement errors (εn) and the sensi-
tivity of the retrieval to measurements. The (total) retrieval
error given by Eq. (18) is the sum of the retrieval error due to
measurements errors and the prior retrieval error.

For the MAP estimate given above and the definition of
x̂Ax , it follows, using the chain rule and the assumption that
measurements are unbiased and errors uncorrelated, that

x̂Ax = Cxx̂(sTH
x C−1

sŝ
sTx +

uTH
x C−1

uû
uTx (25)

+
wTH

x C−1
wŵ

wTx)

We refer tox̂Ax as the averaging kernel matrix. The matrix
x̂Ax is, in general, not a symmetrical matrix. It is a 2n×2n

matrix, where 2n is the number of elements inx. x̂Ax can be
written as

x̂Ax =

(
b̂Ab

b̂Ac
ĉAb

ĉAc

)
, (26)

where each of the blocksb̂Ab, b̂Ac, ĉAb, and ĉAc aren×n.
The b̂Ac matrix gives the sensitivity of the bedrock retrieval
to the (true) basal slipperiness distribution, while theĉAb ma-
trix gives the sensitivity of the estimate of basal slipperiness
to the (true) bedrock topography. These two averaging ker-
nel matrices will be referred to as mixing kernel matrices.
Clearly, for a good retrieval these elements of the mixing ker-
nel matrices should be as small as possible. The elements of

b̂Ab give the sensitivity of the bedrock-topography retrieval
to those of the true bedrock topography. SimilarlyĉAc is the
sensitivity of the slipperiness retrieval to the actual basal slip-

periness distribution. We refer to theb̂Ab and theĉAc kernels
as the direct averaging kernel matrices. For good retrieval
there should be as little mixing as possible mixing between
frequencies while the sensitivity of corresponding frequen-
cies in the true and estimated system state should be as close

as possible to one, that is ideally the direct kernelsb̂Ab and
ĉAc should be unit matrices.

The sensitivity of the retrieval̂x to the prior estimatẽx is
defined as

x̂Ax̃ :=
∂x̂

∂x̃
. (27)

From Eq. (17) we find

x̂Ax̃ = Cxx̂C−1
xx̃

, (28)

and using either Eq. (20) to calculatex̂Ax̃ together with
Eq. (25), or using the above equation in combination with
Eqs. (18) and (25), it follows that

1 =
x̂Ax̃ +

x̂Ax, (29)

giving the relationship between the sensitivity of the retrieval
to the system state and the prior estimate, and showing that
the retrieval is sensitive to either the true system state or the
prior estimate. Hence, deviations of the averaging kernel ma-
trix x̂Ax from the unit matrix is a measure of how sensitive
the retrieval is to the prior estimate as opposed to the surface
data. Taking the trace of Eq. (29) we can define the number
of model parameters resolved by the measurements as trx̂Ax

and the number of model parameters resolved by the prior in-
formation as trx̂Ax̃ . The number of basal quantities resolved
by the surface measurements (ds) is therefore

ds = tr x̂Ax, (30)

i.e. the trace of the averaging kernel matrix.

3 Results

As an illustration of the method we start by showing results
of an inversion using synthetic data. We stress that apart from
this one example, none of the following results depend on the
use of synthetic data.

The forward calculation was done for an ice stream with a
mean surface slope of 0.005, and a slip ratio of 500, where
the slip ratio is defined as the ratio between mean basal slid-
ing velocity and forward velocity due to shearing through the
ice column. Spatially uncorrelated and normally distributed
data errors were added. Surface topography errors were 1%
of mean thickness, and errors in both horizontal and vertical
velocity components were set at 1% of mean surface velocity.
The spacing between measurements was equal to one mean
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ice thickness. The prior for the basal topography and the
basal slipperiness was modelled as a covariance-stationary
first order auto-regressive model with zero mean as described
in the previous section. Both decay lengths (λ

b̃
andλc̃) were

set at 25h̄ (see Eq.11). The error was 10% of the respective
mean values, i.e.σ

b̃
=0.1h̄ andσc̃=0.1c̄ (see Eq.12). Syn-

thetic prior distributions (̃x) were generated using̃x=C1/2
xx̃

ε

whereε is a sequence of pseudo random numbers with mean
zero and unit variance. Gaussian perturbations in true basal
topography and true basal slipperiness were prescribed.

Non-dimensional variables are used. All lenghts are nor-
malized with the mean ice thickness. Stresses are normal-
ized with the mean basal shear stress, and velocities by mean
deformational velocity. These scaling followGudmundsson
(2003). As before the ratio between mean sliding velocity
and basal shear stress is referred to as the basal slipperiness.
In non-dimensional variables this ratio is also equal to the
ratio between mean sliding velocity and mean deformational
velocity, that is, to the slip ratio. Hence, in the following the
terms “slip ratio” and “basal slipperiness” are interchange-
able.

An inversion of synthetically generated surface data with
added errors was performed using Eq. (17). As Fig.1 shows,
the retrieved bedrock perturbation (blue line, Fig.1a) traces
the true perturbation (black line) quite accurately. The re-
trieval errors are given by Eq. (18). These errors are in gen-
eral correlated and for that reason somewhat difficult to vi-
sualise. In Fig.1, the square root of the diagonal elements
of Cxx̂ is used to bracket the range of possible retrievals (red
lines). As explained above this error can be thought of as
the sum of the prior retrieval error (εr ) given by Eq. (24)
and retrieval error due to measurement errors (εn). For the
basal topography retrieval, the prior retrieval error compo-
nent, shown as cyan line in Fig.1a, is a small fraction of
the total retrieval error (red line, Fig.1a). Hence, the error
in basal topography retrieval is mostly due to surface mea-
surement errors rather than errors in prior estimates of basal
properties.

In comparison to the estimate of basal topography, the re-
trieved basal slipperiness perturbation (blue line, Fig.1b) is
a much poorer estimate of the true basal perturbation (black
line, Fig. 1b). As Fig. 1b shows, the main contribution to
the total retrieval error (red line) is due to errors in the prior
estimate (cyan line). It follows that increasing the accuracy
of the surface data somewhat will not lead to significant im-
provements in slipperiness retrieval and that the main limita-
tion to further improvement in slipperiness retrieval is insen-
sitivity of the retrieval to surface data.

3.1 Spatial resolution and mixing effects

Inversion of synthetic data of the type shown in Fig.1 can
be instructive and helpful in identifying problems with the
inversion method. However the usefulness of such an inver-

sion exercise is limited by the need to prescribe a particular
form of basal perturbation.

A general description of the sensitivity of the retrieval to
the system state is given by the averaging kernel matrixx̂Ax

(see Eqs.21 and25). Considering the averaging kernel ma-
trix in frequency space we note that for each of the blocks
b̂Ab, b̂Ac, ĉAb, and ĉAc, the i-th row represents the sensi-
tivity of the retrieval to a system state consisting of white
phaseless noise. If there is no mixing between frequencies,
that is if one frequency in the retrieval is only related to that
same frequency of the system state, then the only non-zero
elements of thei-th row of these blocks is at locationi of the
corresponding block. It follows that for each of the blocks
b̂Ab, b̂Ac, ĉAb, and ĉAc, the numerical difference between
the element at locationi, and the sum over all elements of
thei-th row, can be taken as a measure of frequency mixing.

Similarly, for each of the blocksb̂Ab, b̂Ac, ĉAb, andĉAc the
i-th columns give the frequency spread, i.e. the sensitivity of
all frequencies of the retrieval to one single frequency of the
system state.

A further undesirable mixing effect is represented by the

blocksb̂Ac and theĉAb. These give, respectively, the sensi-
tivity of the basal topography retrieval to true basal slipperi-
ness, and the sensitivity of the retrieved basal slipperiness to
true basal topography. For a good retrieval these matrix ele-
ments should not only be small in comparison to unity, they
should also be small in comparison to the diagonal elements

along the same rows of the averaging kernel matricesb̂Ab

andĉAc.

Figure2 shows the sensitivity of the retrieval to true sys-
tem state in frequency space. The curves in the figure fol-
low from Eqs. (25) and definition (26). The difference be-
tween solid and dashed lines of same colour represent fre-
quency mixing effects. The green and the cyan lines rep-
resent mixing between basal topography and basal slipper-
iness in the retrieval. The figure was calculated assuming
errors in surface measurements of topography and velocity
equal to 1% of mean values of ice thickness and surface
speed. For an ice stream with thickness of 1000 m and sur-
face speed of 1 m d−1 this translates to 10 m elevation errors
and 0.01m d−1 errors in horizontal and vertical velocity com-
ponents. Airborne measurements of surface topography can
easily reach this kind of accuracy (Vaughan et al., 2006),
and both repeated annual surveying of stakes positions us-
ing GPS techniques and InSAR velocity measurements give
surface velocities within or comparable to this level of error
(Joughin, 1995; King, 2004; Dach et al., 2009).

The dashed-lined red curve in Fig.2 shows the size of

the diagonal elements of theb̂Ab averaging kernel matrix.
These are close to unity showing that bedrock topography
is well resolved down the wavelengths comparable to one
mean ice thickness. The solid red curve is the sensitivity of
the retrieval at given wavelength to white noise. The small
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Fig. 2. Frequency sensitivity of basal retrieval to surface data. The
dashed lines, labelled 1−1, show the sensitivity of basal properties
as functions of wavelength to true basal values at the same wave-
length. The solid lines (1−n) show the sensitivity of the retrieval as
a function of wavelength to all wavelengths of the true basal condi-
tions. The difference between the solid and the dashed lines of same
colour is a measure for undesirable frequency mixing effects. The
red lines show the sensitivity of the estimate of basal topography to
the true basal topography, and the blue lines the sensitivity of esti-
mated basal slipperiness to true basal slipperiness. The green and
the cyan lines represent further undesirable mixing effects where
bedrock perturbations affect estimates of basal slipperiness (cyan
lines) or where estimates of bedrock topography are contaminated
by variations in basal slipperiness. The figure was calculated using
a surface slope of 0.005 and mean slip ratio of 500. Surface mea-
surement locations were one ice thickness apart and surface data
errors were 1% of ice thickness and mean surface velocity. prior
values for basal topography and basal slipperiness were modelled
as first-order auto-regressive processes with decay length scales of
25h̄ and 10% errors.

difference between the solid and the dashed red curves im-
plies that frequency mixing is not a significant problem for
bedrock topography retrieval.

The small difference between the dashed and the solid blue
lines in Fig.2 shows that frequency mixing does not pose a
problem for basal slipperiness retrieval either. However the
spatial resolution is somewhat limited with sensitivity greater
than 0.5 only for wavelengths larger than about 40–50 ice
thicknesses.

Mixing between different types of basal perturbations is
represented by the green and cyan curves in Fig.2. These

dashed lines show the main diagonal elements of theb̂Ac and
the ĉAb averaging kernels, respectively, while the solid lines
are the sums of the rows. Significant mixing (>0.2) is only
found in theĉAb kernel (solid cyan line in Fig.2) and is lim-
ited to wavelengths within a fairly narrow range of 20 to 40
ice thicknesses. As can be seen from the substantial differ-
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Fig. 3. Point spread functions showing the sensitivity of basal re-
trieval to true basal perturbations. The upper panel shows in blue
the sensitivity of basal topography (b) retrieval to point perturba-
tion in basal topography located atx=0, and in green the sensitivity
of basal slipperiness (c) retrieval to point perturbation in slipperi-
ness. The lower panel shows the degree of mixing between basal
topography and basal slipperiness in the retrieval. The blue curve in
the lower panel is the sensitivity of the basal topography retrieval to
basal slipperiness, and the green curve is the sensitivity of the basal
slipperiness retrieval to point perturbation in basal topography. Val-
ues of all model parameters are same as those used in Fig.2.

ence between the dashed and the solid cyan lines, this mixing
between basal slipperiness retrieval and basal topography is
combined with frequency mixing. Hence, sinusoidal pertur-
bations in basal topography are aliased into basal slipperi-
ness perturbations (b to c mixing) at different wavelengths
(frequency mixing).

From Fig.2 it is not clear which frequencies of the sys-
tem state contribute to frequency mixing. It is also diffi-
cult to visualise the spatial resolving power of the retrieval
method from a frequency-space representation such as the
one in Fig.2. A different way of looking at the averaging
kernels is to consider the “point spread functions” shown in
Fig. 3. The point spread functions represent the spatial, as
opposed to the frequency, sensitivity of the retrieval to a lo-
calised point perturbations in system state. Figure3 shows
four point spread functions corresponding to the sensitivity
of the basal topography retrieval to point perturbations in
basal topography (blue curve labelled bb in Fig.3a) and basal
slipperiness (blue curve labelled bc in Fig.3b), and the sensi-
tivity of the basal slipperiness retrieval to point perturbations
in basal slipperiness (green curve labelled cc in Fig.3a) and
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Fig. 4. Number of resolved basal quantities per surface measure-
ment site as a function of distance between sites. The red curves
show number of resolved basal topography quantities and the blue
ones the number of resolved basal slipperiness quantities. Is is as-
sumed that prior errors are 10% of mean values with decay length
of 25 mean ice thicknesses.

basal topography (green curve labelled cb in Fig.3b). Values
of all relevant parameters such as average slope, data errors
and data spacing are the same as in Fig.2.

The strong differences in spatial resolution of the basal to-
pography retrieval in comparison to that of the basal slipperi-
ness retrieval is clearly seen in Fig.3a. As the figure shows, a
point perturbation in the system state ofb is retrieved almost
perfectly while the retrieval of a point perturbation in basal
slipperiness retrieval is broad.

The degree of mixing between different types of basal per-
turbations is shown in Fig.3b. As Fig.2 showed in a different
way, this type of mixing is not strong. In particular there is
almost no mixing with the basal slipperiness in the basal to-
pography retrieval. The green curve in Fig.3b shows that
point perturbation inb leads to some reduction in slipperi-
ness in upstream direction from a bedrock disturbance and a
similar increases in downstream direction.

3.2 Number of resolved basal quantities

Our discussion above on spatial resolution and mixing ef-
fects was limited to one particular set of parameters defining
data errors and data spacing. All surface data errors were
1% of mean values or ice thickness and horizontal speed, and
prior errors were set at 10% of mean thickness and mean slip-
periness with decay length scale equal to 25 ice thicknesses.
Furthermore, the spacing between measurement sites at the
surface was equal to one mean ice thickness. We will now
investigate the effects of surface data errors and spacing on
the number of resolved basal quantities as given by Eq. (30).

A convenient measure of information on basal proper-
ties gained by surface measurements is the number of re-
solved basal parameters per measuring site at the surface. As
Eq. (30) shows the total number of basal quantities resolved
by surface measurements equals the trace of thex̂Ax averag-
ing kernel matrix. For both basal topography and basal slip-
periness the maximum number of resolved parameters isn,
and the maximum total number of resolved parameters there-
fore 2n. The number of measuring sites at the surface ism,
and at each of these sites we have three data values giving
the surface elevation and the horizontal and vertical velocity
component at that site. In the following we assume that the
number of measurement sites equals the number of locations
along the bedline where estimates of basal quantities are to
be updated, that ism=n. The number of resolved basal to-
pography (̄db

s ) and basal slipperiness (d̄c
s ) quantities per mea-

surement site is then

d̄b
s =

1

n
tr b̂Ab, (31)

and

d̄c
s =

1

n
tr ĉAc, (32)

respectively. If, for example, the number of resolved basal to-
pography quantities per measurement site is close to unity, all
of the surface data sites are contributing significantly more to
the estimate of basal topography than the prior information.
If this number is equal to 0.5, the sensitivity of the retrieval
to surface data is equal to its sensitivity to prior information.

It should be noted that there are number of other possi-
ble ways of quantifying the information content of the sur-
face measurements. One could for example define the in-
formation content of surface measurements in terms of the
reduction in entropy (Shannon and Weaver, 1949; Togneri
and DeSilva, 2003), in which case the difference between
the covariance of the MAP solution and the covariance of the
prior is taken as a measure of how much the measurements
have affected our estimate of the system state. We calculated
the Shannon information content but found, as have other
authors (e.g.Purser and Huang, 1993), that this measure of
information has some undesirable properties. For example,
despite being only of local influence, a single precise mea-
surement greatly alters this measure of information.

Figure4 shows how data errors affect the number of re-
solved basal quantities per surface measurement site as a
function of distance between sites. Data errors are shown
as percentages of corresponding mean values. A 0.1% data
error implies, as an example, a 0.001h̄ error in surface to-
pography and a 0.001ū error in both horizontal and vertical
velocity components, wherēu is the mean surface speed. Ide-
ally, the number of resolved quantities per site would be close
to unity. Note also that a slope of zero in Fig.4 represents
a situation where the effect of reducing the spacing between
measurement sites is a directly proportional increase in the
total number of resolved basal quantities.
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Fig. 5. Number of resolved bedrock topography (red lines) and
basal slipperiness quantities (blue lines) per site as a function of
distance between sites. The solid lines are for 1% errors in all data
sets and corresponds to a situation wheres, u, andw are known to
a good accuracy. The other lines show the situation when one ofs,
u, or w is effectively unknown (50% errors). For the dotted lines
s, andw are known butu unknown. For the dash-dotted lines and
the dashed lines,w ands are not known, respectively. Note that the
effect of data errors inw are so small that the corresponding line
(dash-dotted blue line) is not visible under the thicker solid blue
line.

As Fig.4 shows the number of resolved basal topography
quantities per site only starts to drop significantly down from
unity with reducing site spacing for spacing corresponding to
about one ice thicknesses, with exact values depending on the
size of data errors (Fig.4, red curves). For basal slipperiness,
on the other hand,̄dc

s is only larger than about 0.7 for spacing
larger than 10̄h if data errors are less than 0.1% (Fig.4, blue
curves).

Figure 5 show d̄b
s and d̄c

s when one of the surface data
types (s, u, or w) is not known. Of the three data setss, u,
andw, not having information about the surface topography
(s) has the largest detrimental effect on theb retrieval. How-
ever, as the figure demonstrates knowledge of the surface to-
pography is far from critical for the retrieval of basal topog-
raphy. Almost identically many basal topography parameters
can be resolved in the absence of information about surface
topography from knowing the surface velocity vector alone.
It is only for distances above about 20 ice thicknesses that
not knowing the surface topography starts to significantly de-
grade theb retrieval. A further interesting aspect of Fig.5 is
how unimportant the vertical velocity component (w) is for
the c retrieval. In fact, not knowingw has such a small ef-
fect ond̄c

s that the corresponding blue coloured dash-dotted
curve in Fig.5, showingd̄c

s for s andu but notw known, is
not visible under the thicker solid blue curve givingd̄c

s for all
of s, u andw known.
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Fig. 6. Number of resolved basal topography (red curves) and basal
slipperiness (blue curves) quantities as a function of distance be-
tween measurement sites at the surface for different error estimates
for the prior basal topography. The thick and the thin curves were
calculated given 1% and 30% uncertainty, respectively, in the prior
basal topography.

The basal slipperiness retrieval can be expected to be im-
proved when accurate prior information on basal topography
is available. Figure6 shows the number or basal quantities
resolved by surface measurements for two different error es-
timates of prior basal topography. Comparison of the two
blue lines in that figure shows that improving the estimates
of prior basal topography from 30% error level to 1% error
does indeed increase the number of resolved basal slipperi-
ness quantities. However, that improvement is modest and
the increase in̄dc

s no larger than about 0.1 (Fig.6). We con-
clude that a good prior knowledge of basal topography is not
an essential requirement for successful retrieval of basal slip-
periness.

The number of basal topography quantities resolved by
the prior clearly must increase with decreasing prior errors.
Hence the significant drop in̄db

s values with reduced errors
in prior basal topography seen in Fig.6. Interestingly, the
sensitivity of the basal topography retrieval to surface data is
still around 0.2 to 0.3 for site distances above one mean ice
thickness for only 1% errors in prior basal topography (see
Fig. 6). Hence, it is important to solve for bothb andc even
when accurate independent estimates ofb are available. Not
solving for b when basal topography is known corresponds
to artificially suppressing the sensitivity of theb retrieval to
surface data to zero, whereas in fact, as Fig.6 shows, the ac-
tual sensitivity for just 1% prior errors inb is around 0.2 to
0.3. Ignoring this sensitivity will inevitably cause a bias in
thec estimate. The magnitude of this bias can be estimated
by considering the mixing terms of the kernel matrixx̂Ax̃ .
From Eq. (29) and using Eq. (26) we find that sensitivity of
thec retrieval to prior estimates ofb is the negative ofĉAb.
As we have seen this mixing term can be as large as about
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0.3 for wavelengths between around 20 to 50 ice thicknesses
with most of that contribution due to frequency mixing (see
solid cyan curve in Fig.2). We note that Fig.2 was calcu-
lated for aσ

b̃
=0.1h̄ and that the exact errors inc retrieval

due to incorrect error estimates for the prior basal topogra-
phy will change somewhat as a function ofσ

b̃
. Inspection of

x̂Ax and its blocks shows that with decreasing prior errors
in basal topography the sensitivity of thec retrieval to per-
turbations in true basal topography increases sharply and can
easily become much larger than unity.

The sensitivity of the retrieval of basal slipperiness and
basal stress to errors in basal topography was investigated
by Joughin et al.(2004). They solved for basal shear stress
only, without allowing for any variations in basal topogra-
phy. Contrary to our findings they concluded that errors in
basal shear stress estimates did not increase markedly with
errors in basal topography. Similar conclusions were drawn
by Vieli and Payne(2003) who inverted for basal slipperi-
ness with, and without, a simultaneous inversion for bedrock
topography, and found that in both cases the resulting basal
slipperiness was quite similar. It is possible that the root of
some of this difference might be in the use of different for-
ward models.Joughin et al.(2004) solved the shallow ice
stream equation for non-linear media while we solve the full
Stokes system for linear media. However, it is also possible
that this difference is related to difference in the way the sen-
sitivity experiments were performed.Joughin et al.(2004)
solved the diagnostic equation for each change in input pa-
rameters. The prognostic equation was not used to ensure
that both the rate of surface elevation changes and the sur-
face mass balance were within set limits. This is an approach
followed by number of other authors (e.g.,Vieli and Payne,
2003). In this study we have assumed zero surface mass bal-
ance and zero rate of surface change with time and have ac-
cordingly calculated the steady state surface topography and
surface velocities corresponding to zero surface mass balance
for any given change in basal quantities. It seems likely that
the sensitivities of retrieved basal quantities to errors in basal
topography when a) surface topography is held constant, and
when b) corresponding steady state surface topography is
calculated, are not the same. The differences between our
conclusions and those ofJoughin et al.(2004) could, hence
be due to differences in the way the sensitivity of retrieval to
errors in basal topography is defined.

4 Limitations and possible extensions

A key feature of the retrieval method is the use of analyt-
ical transfer functions, that describe the effects of small-
amplitude perturbations in basal conditions on surface ge-
ometry and surface velocity, as a forward model. The trans-
fer functions used here are solutions to the full Stokes sys-
tem and only valid for Newtonian media and a linear slid-
ing law. However, the effects of a non-linear sliding law

on surface-to-bed retrieval on ice streams, over horizontal
spatial scales that are large compared to the mean ice thick-
ness, could be studied by using the transfer functions given
in Gudmundsson(2008). Doing so would require no essen-
tial modifications to the method as presented here. Including
finite-amplitude effects in combination with non-linear ice
rheology and non-linear sliding law requires a fully numeri-
cal treatment. This non-linear retrieval problem can, for ex-
ample, be solved using an iterative procedure where forward
model derivatives are approximated by the analytical trans-
fer functions. The iterative step of such a method would be
almost identical to the method presented and used here. This
extension of the method to non-linear rheology, non-linear
sliding law, and finite-amplitude perturbations is the subject
future paper (Raymond and Gudmundsson, 2008).

Transfer functions for non-linear rheology and non-linear
sliding have been calculated numerically byRaymond and
Gudmundsson(2005). Qualitatively, the effects of non-linear
rheology and non-linear sliding on the retrieval can be es-
timated by comparing transfer functions calculated for both
the linear and non-linear situations. For high slip ratios (>5),
the effect of increasing the value of the stress exponent in
Glen’s flow law is an increase in the ratio between surface
and bed topography (see Fig. 8b inRaymond and Gudmunds-
son, 2005, for more detail). For the ratio between surface
topography and basal slipperiness the effect is, over most
wavelengths, the opposite and the (non-dimensional) ratio
between perturbations in surface topography and fractional
slipperiness decreases with increasing value of the stress ex-
ponent (see Fig. 9b inRaymond and Gudmundsson, 2005,
for more detail). This suggests that non-linear rheology may
improve the retrieval of basal topography but degrade slip-
periness retrieval. However, the picture is complicated by
the fact that changing the value of the stress exponent also
affects surface velocity response to basal perturbations, and
a definitive answer must await a fully non-linear treatment.

The method is here only used for data along a flow line and
we have not considered the consequences of the transverse
dimension on retrieval. In particular, we empathise that the
bounds given above on the spatial resolution of basal slipper-
iness variations have been obtained for a flow-line inversion
where transverse effects have been ignored. Perturbations in
basal slipperiness of final transverse width give rise to pat-
terns of horizontal divergence and convergence (see Figs. 2,
5c and 5d inGudmundsson, 2003). It is possible that in many
situations the resulting disturbance in horizontal flow veloci-
ties are large enough for perturbations in basal slipperiness of
finite width to be extracted from surface data with higher spa-
tial resolution than suggested by the one-dimensional treat-
ment given here. Based on the transfer characteristics (see
Fig. 5b inGudmundsson, 2003) it seems, for example, quite
possible that a transversal sinusoidal perturbation in basal
slipperiness, i.e. with a crest that is aligned with the flow, can
be resolved from surface data down to a (transverse) wave-
length considerably shorter than the limit of about 50h̄ given
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here for longitudinal perturbations. Further support for this
expectation comes fromSchoof(2004) who found that a nar-
row transversal perturbation in basal yield-stress on a per-
fectly plastic ice stream can significantly affect the horizon-
tal velocity component at the surface (see Fig. 3a inSchoof,
2004).

Finally, we have not considered the effects of finite-
amplitude perturbations in basal properties, or the effects
of form drag on the transmission of basal disturbances to
the surface. Our purpose here has been to give as general
a description of the surface-to-bed inverse problem as pos-
sible using an analytical approach. Finite-amplitude per-
turbations are inherently non-linear, the superposition prin-
ciple does not apply and making general statements based
on an analytical approach is difficult. However, we do not
expect finite-amplitude effects, or the effects of form drag,
to change our results.Raymond and Gudmundsson(2005)
found finite-amplitude effects not to significantly affect the
bed-to-surface transmission characteristics for small to mod-
erate basal amplitudes. For example, for sinusoidal basal per-
turbations with a wavelengthλ=5h̄, the analytical solutions
are correct to within a few percent for normalised bedrock
amplitudes (1b/h̄) and fractional slipperiness (1C/C̄) am-
plitudes up to 0.3h̄ for a slip ratio of 1000 (see Fig. 3 inRay-
mond and Gudmundsson, 2005). For large wavelengths the
agreement is even better. These findings are in sharp con-
trast to conclusions drawn bySchoof(2002) who argued that
some of the assumptions behind the analytical approach in
(Gudmundsson, 2003) start to be violated for bedrock ampli-
tudes as small as 0.2 m for 1000 m thick icestreams.

5 Summary and conclusions

We have shown how basal topography and basal slipperiness
can be retrieved simultaneously from surface measurements
without any significant frequency mixing or mixing between
these two different types of basal perturbations. No smooth-
ing of surface data is needed, and once errors in input data,
i.e. surface data and prior information about basal properties
are defined, the maximum a posteriori estimate and retrieval
errors are uniquely determined.

We find that inversion of surface measurements of topog-
raphy and velocity, combined with approximate estimates of
mean ice thickness (h̄) and mean basal slipperiness, can be
used to resolve spatial variations in basal topography down
to about one ice thickness, with the exact number depen-
dent on data errors and spacing. In comparison, the best ob-
tainable spatial resolution of basal slipperiness variations is
much more limited. For 1% data errors, for example, small
amplitude spatial variations in basal slipperiness can only be
resolved for wavelengths larger than about 50 mean ice thick-
nesses.

The number of resolved basal topography quantities per
measurement site is close to unity down to a spacing between
sites of onēh. For basal slipperiness the corresponding num-
ber is generally much smaller and only larger than 0.6 for
spacing larger than ten̄h and for highly accurate measure-
ments (data errors less than about 0.1% of mean values).

Accurate prior estimates of basal topography do not sig-
nificantly improve the retrieval of variations in basal slipper-
iness. This does, however, not imply that measurements of
basal topography are not useful in combination with surface-
to-bed inversion. Such independent information about basal
topography can be expected to be useful for both model val-
idation purposes and prior error covariance modelling.

The sensitivity of basal slipperiness retrieval to true basal
topography increases sharply with decreasing prior errors in
basal topography. Not allowing for some variation in basal
topography when solving for spatial variations in basal slip-
periness is equivalent to setting prior errors in basal topog-
raphy to zero. In this case, estimates of basal slipperiness
can be significantly affected by unmodelled errors in basal
topography.
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