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Abstract. An optimal estimation method for simultane- 2004 200§. Simultaneous retrieval of both basal topogra-
ously determining both basal slipperiness and basal topogphy and basal lubrication was done biiorsteinsson et al.
raphy from variations in surface flow velocity and topogra- (2002, and a Bayesian framework for surface-to-bed inver-
phy along a flow line on ice streams and ice sheets is presion was outlined bysudmundsso2004. To date, limited
sented. We use Bayesian inference to update prior statisticalttention has been paid to some more general aspects of sur-
estimates for basal topography and slipperiness using surface inversion on glaciers. For example it remains unclear
face measurements along a flow line. Our main focus herdnow the accuracy of estimates of basal quantities is affected
is on how errors and spacing of surface data affect estimateBy the spatial distribution of surface measurements and mea-
of basal quantities and on possibly aliasing/mixing betweensurement errors. Possible mixing effects, such as the effects
basal slipperiness and basal topography. We find that the elf basal topography on retrieved slipperiness distributions
fects of spatial variations in basal topography and basal sliphave also not received much attention.
periness on surface data can be accurately separated fromThe aim of this paper is to clarify the effects of data den-
each other, and mixing in retrieval does not pose a seriousity and data quality on indirect estimates of basal topogra-
problem. For realistic surface data errors and density, smallphy and basal slipperiness on ice streams. We do this by con-
amplitude perturbations in basal slipperiness can only be residering three different aspects of the retrieval, 1) errors due
solved for wavelengths larger than about 50 times the meamo mixing between basal topography and basal slipperiness
ice thickness. Bedrock topography is well resolved down toin retrieval and mixing between different frequency compo-
horizontal scale equal to about one ice thickness. Estimatesents (mixing errors), 2) the spatial and frequency resolution
of basal slipperiness are not significantly improved by accu-of the retrieval, and 3) the number of resolved basal quanti-
rate prior estimates of basal topography. However, retrievaties per measurement site at the surface.
of basal slipperiness is found to be highly sensitive to un- We use a Bayesian approach to this inverse problem and
modelled errors in basal topography. determine the bedrock profilé(x)) and the spatial slip-
periness distributionc(x)) which maximise the conditional
probability P (b, c|s, u, w), wheres(x), u(x), andw(x) are
1 Introduction the surface topography, and the horizontal and vertical sur-
face velocity component, respectively. The forward model
Indirect inference of basal shear stress distributions of icdS based on perturbation solutions to the full Stokes system
streams from measurements of surface data has been usé@udmundsson2003. Consequently our results are only
successfully in the past to study the role of basal conditionsstrictly valid in the limiting case of linearised flow pertur-
in controlling the flow of ice stream#facAyeal 1992 1993 bations. Numerical estimates of the strengths of non-linear
MacAyeal et al. 1995 Vieli and Payne2003 Joughin etal.  €&ffects in the forward model can be foundRaymond and
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The method used here differs in a number of aspects fron2 Theoretical framework
previous work done by other authors on the surface-to-bed

inversion problem on glaciers and ice sheets. We formally\we consider the problem of determining basal slipperiness
introduce prior information about basal properties and useand basal topography from measurements of surface topog-
the surface measurements in combination with the prior inraphy and surface velocity on glaciers. The forward prob-
formation to give an updated estimate of basal propertiesiem consists in solving the full set of the linear momen-
This new estimate of basal properties is given in terms of aym equations;; ;+ f;=0, the angular momentum equations
Gaussian probability density function defined through a maX-g;;—;;=0, and the incompressibility condition ;=0 for
imum a posteriori (MAP) solution and its covariance. In the 3 linear media wheré;;=t;;/(2n) and for a linear sliding
sense that the solution maximises the conditional probabilityjaw u,=ct,. In these equations;; are the elements of the
P (b, cls, u, w), it can be regarded as an optimal estimate of Cauchy stress tensof, the elements of the body force, the
basal properties. A further example for optimal estimation invelocity components¢;; are strain ratesy;; are deviatoric
ice sheet modelling can be found irthern and Hindmarsh  stressesy the ice viscosityy;, the basal sliding velocityz,
2003. the basal shear stress, arttie basal slipperiness. In addition
Although not always stated explicitly, some sort of a priori to these equations we have the kinematic boundary condi-
expectation about “sensible” basal properties has been usegbns at the upper and lower boundaries. We consider steady-
in most, if not all, previous work. For example the particular state conditions and ignore accumulation and ablation.
minimising norm used byruffer (2004 reflects the reason-  the model domain is that of a slightly perturbed uniformly
able expectation that basal properties are in some ways SP§scjined slap with periodic boundary conditions. The pertur-
tially correlated and that surface data can only be expected t@4tions that we consider here are perturbations in basal to-

give information about basal properties over restricted set Obography and basal slipperiness. Unless otherwise specified,

spatial scales. _ the amplitude of a basal topography perturbation is given
As pointed out byNMacAyeal et al.1999, formostinverse o4 3 fraction of the mean ice thickness. Correspondingly,

problems direct minimisation of the misfit betweer} measureti o amplitude of a basal slipperiness perturbation is given
and modelled data does not always lead to a satisfactory Sy 4 fraction of the mean basal slipperiness. For example, a

lution. In the control method introduced MacAyeal(1993  (fractional) basal slipperiness perturbation with an amplitude
and used by number of other authors (e\ieli and Payne  gqual t0 0.1 corresponds to a8 perturbation in basal slip-

2003 Joughin et a].2004 Larour et al, 2009, this prob-  yeriness, where is the mean basal slipperiness. We have
lem is avoided by starting with an initial guess judged to beﬁ;,:éf;, whereii, and7, are the mean basal sliding velocity

reasonable by the modeller and by not fully minimising the 54 the mean basal shear stress respectively.
misfit between measured and modelled data. Not fully min- '

imising the misfit is a way of ensuring that the solution norm
does not grow beyond bounds. In effect this limits the set

of admissible solutions and can be thought of as a form of a ) ] )
constraint on the solution. Measurements are available at discrete points, and we refer

Although hitherto not commonly used in glaciology, the to the set of all surface measurement values as the measure-

Bayesian approach to inverse problems applied here is ofment vector. When referring tq this (finite) set qf surface

ten used to solve geophysical inverse problems, and we refdpeasurements, the corresponding vectors are written in bold

the reader to books bylenke (1989, Rodgers(2000), and  1ace:

Tarantola(2009 for a general description. Bayesian inver-  The variables to be estimated are the veckande giving

sion is a statistical inference method where indirect measurethe bed topography and basal slipperiness along the profile.

ments of some quantity are used in combination with earliefVe lump these vectors together into one system state vector

estimates of that quantity to arrive at a new and improved esx and, think ofx as consisting of two subvectors andx;

timate. The estimate is optimal in the sense that it maximisegvherex;=b andx=c. Hencex=(b, ¢)", whereH denotes

the conditional probability? (x| y) wherex is the quantity to  the Hermitian transpose. We use the Hermitian transpose be-

be estimated, and are indirect measurements.of The in- cause the inversion is done in Fourier space where all vari-

direct measuremenisof x are related tor throughy=f(x)  ables are complex.

where f is referred to as the forward model. Here, in our  Surface data is lumped together into the measurement vec-

particular case, the indirect measuremenfsafe measure- tor y. The set of surface data considered here are measure-

ments of velocity and topography along the upper surface ofments of surface topography)( and the horizontal and ver-

a glacier, the quantity to be estimated is basal topography tical velocity componenta and w, respectively. For nota-

and basal slipperiness. tional convenience we splitinto three subvectors and write
y1=s, yo=u, y3=w. Hencey=(s, u, w)’’. We also write
€1=¢,, €e2=¢,, andes=¢,,, Wheree,, ¢,, ande,, are the cor-
responding surface measurement errors.

2.1 Notation

The Cryosphere, 2, 16748 2008 www.the-cryosphere.net/2/167/2008/
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The set of all parameters entering the problem that are nogrror covariance matrices, where the expectation value op-
solved for as a part of the inversion procedure is denoted byerator is taken about the true value of some quantity. The
p. These parameters include, for example, those related terror in surface topography measurements is, for example,
ice rheology. described through the covariance matrix

A tilde above a quantity denotes an a priori estimate while R R "
a hat above a quantity denotes an a posteriori estimate. Thufgss =< & =) = )7 >, (4)
x is the true system state whilg andx are the a prioriand simply as
the a posteriori estimates, respectively. Measurement val-
ues are denoted by a hat above the corresponding quantitf@s; =< ;e > . (5)
We write for example=s+¢; wheres is the surface mea-
surement vectog is the true surface ang the error in the
surface measurement.

We assume that measurement errors are normally distributed
and uncorrelated.
The error in the prior estimate is described by the covari-

2.2 Linear forward problem ance of the ensemble of states about the prior state
The relationship between surface measurements and bashrs =< (x = X)((x — ) >. (6)
variables is written as We assume that the prior estimates of bed topography and
§ € basal slipperiness are mutually uncorrelated and v@itg
| =fbcp+ e;, , 1) on the form
'2’ €u Cx£:[<(b—l3)(b—l;)H> o ]'(7)
where f is the forward model. We have assumed here that 0 <(=-0-0" >

the forward model is perfect in the sense that it correctly de-we know of no studies were the spatial correlation in basal

scribes the relationship between base) and surface X)  topography or basal slipperiness have been estimated. It

fields when exact estimates of model parametgsand  seems, however, unlikely that basal topography and basal

basal quantities are available. slipperiness are spatially uncorrelated. A reasonable model
In Fourier space the relationship between horizontal andfor the prior basal topography covariance

vertical surface velocity components 4ndw), surface to-

pography §) and the basal variablésande can be described  Cp; =< (b — b)(b — b)" (8)

through transfer functions. Here we use the transfer func-

tions given byGudmundssorf2003. Surface and bedrock

variables are related through

Is a stationary first-order auto-regressive proc8ss (et al,
1994 where the prior estimate of the basal topography at
location: is related to that at locatian-1 through

R ,
Yi = ij Xj, (2) b — ¢b l+6b’ (9)
where the summation convention is used, &g, are trans-

- . . - 2
fer functions. It is useful to use extended transfer functions, wheree; is uncorrelated with variance®. It follows (Box

‘et al, 1994 that the elements of the covariance mattix

defined as
are
=Ty Y%T,), 3
CiTpYTe) 3 C, 0 _sze—h s (10)

These matrices have the dimensions 2n wheren is the )
number of locations along the bedline at whicandpb is to ~ Where the decay length scalg s related tap; through
be estimated, and is the number of measurement sites at iy =—1/Ing; (11)
the surface where, u andw have been measured. b

In general, no notational difference is made between theand the variance is
same function in spatial and frequency domain. In the dis- ,
crete case, the forward Fourier transform of the correspond?; = ¢ 2/~ ¢’ )-
ing measurement vectar is given by Fs whereF is the
unitary discrete Fourier transform matrix. The discrete for-
ward Fourier transform of the covariance mat@ixs given
by FCF¥ whereH denotes the Hermitian transpose.

(12)

The two parameters; andag2 define the covariance model.
We refer too;; as the error in prior basal topography. In what
follows this error will usually be defined in terms of the mean
ice thickness:. For example, for a 10 % error in prior basal
2.3 Description of errors topography we have,=0.1z. Do to the to lack of corre-
sponding studies it is difficult to give any well justified es-
Covariance matrices are denoted by the upper case @tter timates fori;. Over spatial scales where the surface data
The covariance matrices considered here will almost all becontains enough information about basal properties for them
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170 G. H. Gudmundsson and M. Raymond: Surface inversion on ice streams

The retrieval error is described through the covariance ma-

retrieved trix
0.1 true i
total retrival error | L & oaH
0.08 a priori retrieval error \ Cxx =< x—-X)(x—x)" >. (14)

In general we expecdt,; to be a full covariance matrix and
the estimates of basal topography and basal slipperiness to
be correlated.

Bedrock (h)

-0.02 2.4 Inverse problem

—-100 -50 0 50 100

The retrieval £) is a function of surface data vectors ,
w), the prior estimate of the system staig, (and the set of

estimated model paramete®)( that is
e 01
£ X=x(,a,w %, p). (15)
2 005
Z We seek to determine a system state that maximises the con-
s °F ditional probability P (b, c|u, v, w). Using Bayes’ theorem
§ 005 this probability can be written as
01 ‘ ‘ ‘ P, clu,v,w) = P(b,c)P(s|b,c)P(ulb,c) (16)
-100 =50 0 50 100 -1
X (h) P(w|b,c)P(s, u, w)

Fig. 1. Examples for retrieval of basal topograpta) and basal WhereP (b, ¢) is the prior estimate of basal properties.
slipperinesgb). Shown in black are the true basal perturbations. Standard arguments show that the maximum a posteriori
The blue lines are the retrieved profiles using B)(Linesinred  (MAP) estimate of the system state is given by

show the total retrieval error estimate defined as the square root of |

t.he di.agonal elements of tt@xx cqvariance matrix (EqL8). The IZ =Cy (s-l—)lcic—}g + uTJIC-ICfELﬁ (17)

lines in cyan show the a priori retrieval error (see E4). ss uu

H~-1 “1.
+Ty Caw +C2%)

the be well resolved, the value bf has little or no effecton  where

the retrieval. Over spatial scales where the surface datadoes , | de H o~ 1u

not lead to any significant improvements in the prior estimateCr; = Tx Cgg T +7Tx C 0" Ty (18)
of basal properties, the value of, on the other hand, signif- ywtHclwy 4 -1

. . . « " x Cww X XX

icantly affects the spatial correlation (“smoothness”) of the

retrieval. With the exception of the results shown in Fig. 1, Expression Eq.1(7) can be rearranged to give

which is an illustration of one particular synthetic inversion

experiment, all the results given below are not affected by the(’f) - (é) (19)
exact value oh; ¢ ‘
An identical model is used for the prior basal slipperiness + Coa CTYCLGE — Tad)
covariance +UTHC L@ — T, %)
He-1 :
Cez =< (¢ — (e — " >, (13) + ¥ T Cop (0 = *Te)).

as for the basal topography, and the corresponding model paz-'5 Error and sensitivity analysis

rameters are denoted by andiz. A 10 % error in basal | jnearising Eq. 15) shows that the difference between the

slipperiness correspondsdg=0.1c. estimate of the system stat&) @nd the true system state)(
One of the reasons for using this model for the prior co-jg given by

varianceC,; is that analytical expression for its inverse ) R )

(C;;L) and its Fourier transformFC,;F?) can easily be % —x = FA, — D)(x — %) + *Ap(p — p) +7Gy€, (20)
determined Box et al, 1994. C,; is the only full covari-

ance matrix entering as an input variable to the problem, andvhere

having analytical expressions for its inverse, and its Fourier, 9%

transform, significantly speeds up the inversion procedure. A=, (21)
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is the sensitivity of the retrievak] to the true system state l;Ab give the sensitivity of the bedrock-topography retrieval
(x), and to those of the true bedrock topography. Similddy, is the
95 sensitivity of the slipperiness retrieval to the actual basal slip-

= (22)  periness distribution. We refer to tha, and thé' A, kernels

_ o _ as the direct averaging kernel matrices. For good retrieval
is the sensitivity of the retrieval to forward model parameters,there should be as little mixing as possible mixing between

JEAP

and frequencies while the sensitivity of corresponding frequen-
2 0% cies in the true and estimated system state should be as close

Gy = i’ (23) as possible to one, that is ideally the direct kerriéls and
. L : . ¢A. should be unit matrices.
Is the sensitivity of the retrieval to surface data wjth=s, The sensitivity of the retrievat to the prior estimaté is
y2=u, y3=u. . . _ defined as

The first term on the right-hand side of expression ) ( X
is the retrieval error due to inaccuracies in the prior. The:, ._ ax @7)
corresponding covariance matrix is T ax
C)Z‘.i‘ _ (fo _ 1)Cx£(£Ax _ 1)H (24) From Eq 0.7) we find
¢ -1

We refer to this error component as the “prior retrieval error”, fAg =CreClp (28)

e and using either Eq.20) to calculate*A; together with

The s_econd term on the right-hand Sld? of expressmr\zq (25), or using the above equation in combination with
Eq. (20) is the retrieval error due to errors in the forward Egs. (8) and @5), it follows that

model parameters and the sensitivity of the retrieval to the
forward model parameters. We refer to th.is error compo-1 — £5. 4 A (29)
nent as the “forward-model parameter retrieval errer?,
Here we assume that errors in forward model parameters argiving the relationship between the sensitivity of the retrieval
small. If not, the corresponding model parameters should béo the system state and the prior estimate, and showing that
included as a part of the system state. the retrieval is sensitive to either the true system state or the
The third term on the right-hand side of EQQ| is the  prior estimate. Hence, deviations of the averaging kernel ma-
retrieval error due to measurement errasg @nd the sensi-  trix *A, from the unit matrix is a measure of how sensitive
tivity of the retrieval to measurements. The (total) retrieval the retrieval is to the prior estimate as opposed to the surface
error given by Eq.18) is the sum of the retrieval error due to data. Taking the trace of E29) we can define the number
measurements errors and the prior retrieval error. of model parameters resolved by the measurements Ag tr
For the MAP estimate given above and the definition of and the number of model parameters resolved by the prior in-
TA., it follows, using the chain rule and the assumption thatformation as tfAz. The number of basal quantities resolved
measurements are unbiased and errors uncorrelated, that by the surface measurements)(is therefore

Ay = Coe CTHC I T, +#THC U7, (25)  d, =trfA,, (30)
-1
+waCw.;,wa) i.e. the trace of the averaging kernel matrix.

We refer to*A, as the averaging kernel matrix. The matrix

AL s, in general, not a symmetrical matrix. It is ax22n 3 Results

matrix, where 2 is the number of elements in *A, can be

written as As an illustration of the method we start by showing results
B b of aninversion using synthetic data. We stress that apart from

A, = ( AAb AAc ) , (26) this one example, none of the following results depend on the
“Ap ‘Ac use of synthetic data.

The forward calculation was done for an ice stream with a

where each of the blocksA,, ?A,, €A, and®A, arenxn.  mean surface slope of 0.005, and a slip ratio of 500, where
The?A, matrix gives the sensitivity of the bedrock retrieval the slip ratio is defined as the ratio between mean basal slid-
to the (true) basal slipperiness distribution, whiletAg ma- ing velocity and forward velocity due to shearing through the

trix gives the sensitivity of the estimate of basal slipperinessice column. Spatially uncorrelated and normally distributed
to the (true) bedrock topography. These two averaging kerdata errors were added. Surface topography errors were 1%
nel matrices will be referred to as mixing kernel matrices. of mean thickness, and errors in both horizontal and vertical
Clearly, for a good retrieval these elements of the mixing ker-velocity components were set at 1% of mean surface velocity.
nel matrices should be as small as possible. The elements dihe spacing between measurements was equal to one mean
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172 G. H. Gudmundsson and M. Raymond: Surface inversion on ice streams

ice thickness. The prior for the basal topography and thesion exercise is limited by the need to prescribe a particular
basal slipperiness was modelled as a covariance-stationafprm of basal perturbation.
first order auto-regressive model with zero mean as described A general description of the sensitivity of the retrieval to
in the previous section. Both decay lengths &ndiz) were  the system state is given by the averaging kernel mésix
set at 25: (see Eql11). The error was 10% of the respective (see Eqs21and25). Considering the averaging kernel ma-
mean values, i.er;=0.11 ando;=0.1c (see Eq12). Syn-  trix in frequency space we note that for each of the blocks
thetic prior distributionsX) were generated usirvb:Cife bpay, PA., €A, and®A,, thei-th row represents the sensi-
wheree is a sequence of pseudo random numbers with meattivity of the retrieval to a system state consisting of white
zero and unit variance. Gaussian perturbations in true basglhaseless noise. If there is no mixing between frequencies,
topography and true basal slipperiness were prescribed.  that is if one frequency in the retrieval is only related to that
Non-dimensional variables are used. All lenghts are nor-same frequency of the system state, then the only non-zero
malized with the mean ice thickness. Stresses are normaklements of the-th row of these blocks is at locatiorof the
ized with the mean basal shear stress, and velocities by meagorresponding block. It follows that for each of the blocks
deformational velocity. These scaling folldudmundsson %A, bA,, ¢A,, and®A., the numerical difference between
(2003. As before the ratio between mean sliding velocity the element at locatioh, and the sum over all elements of
and basal shear stress is referred to as the basal slipperinessei-th row, can be taken as a measure of frequency mixing.
In pon-dimensional va}rigbles thi; ratio is also equal to theSimiIarIy, for each of the block&A,, ?A,, ¢A,, and?A, the
ratio between mean sliding velocity and mean deformational;_th columns give the frequency spread, i.e. the sensitivity of

velocity, that is, to the slip ratio. Hence, in the following the )| frequencies of the retrieval to one single frequency of the
terms “slip ratio” and “basal slipperiness” are mterchange—system state.

able.

An inversion of synthetically generated surface data with
added errors was performed using EL7)( As Fig.1 shows,
the retrieved bedrock perturbation (blue line, Fig) traces
the true perturbation (black line) quite accurately. The re-
trieval errors are given by Eql®). These errors are in gen-

A further undesirable mixing effect is represented by the

blocks?A. and the‘A,. These give, respectively, the sensi-
tivity of the basal topography retrieval to true basal slipperi-
ness, and the sensitivity of the retrieved basal slipperiness to
true basal topography. For a good retrieval these matrix ele-
eral correlated and for that reason somewhat difficult to vi-ments should not only be smaII. N comparison fo unity, they
sualise. In Figl, the square root of the diagonal elements should also be small in comparison to the diagonal elements
of C,; is used to bracket the range of possible retrievals (recflong the same rows of the averaging kernel matrides
lines). As explained above this error can be thought of as@nd“Ac.

the sum of the prior retrieval erroe,) given by Eq. 24) Figure2 shows the sensitivity of the retrieval to true sys-
and retrieval error due to measurement errey3. (For the  tem state in frequency space. The curves in the figure fol-
basal topography retrieval, the prior retrieval error compo-low from Egs. €5) and definition 26). The difference be-
nent, shown as cyan line in Fida, is a small fraction of tween solid and dashed lines of same colour represent fre-
the total retrieval error (red line, Figa). Hence, the error quency mixing effects. The green and the cyan lines rep-
in basal topography retrieval is mostly due to surface mea+esent mixing between basal topography and basal slipper-
surement errors rather than errors in prior estimates of basaness in the retrieval. The figure was calculated assuming
properties. errors in surface measurements of topography and velocity

In comparison to the estimate of basal topography, the reequal to 1% of mean values of ice thickness and surface
trieved basal slipperiness perturbation (blue line, Ely.is ~ speed. For an ice stream with thickness of 1000 m and sur-

a much poorer estimate of the true basal perturbation (blackace speed of 1 md this translates to 10 m elevation errors
line, Fig. 1b). As Fig. 1b shows, the main contribution to and Q01m dYerrors in horizontal and vertical velocity com-
the total retrieval error (red line) is due to errors in the prior Ponents. Airborne measurements of surface topography can
estimate (cyan line). It follows that increasing the accuracyeasily reach this kind of accuracy/gughan et a).2009,

of the surface data somewhat will not lead to significant im-and both repeated annual surveying of stakes positions us-
provements in slipperiness retrieval and that the main limita-ing GPS techniques and InSAR velocity measurements give
tion to further improvement in S|ipperiness retrieval is insen- surface velocities within or comparable to this level of error

sitivity of the retrieval to surface data. (Joughin 1995 King, 2004 Dach et al,2009.
The dashed-lined red curve in Fig.shows the size of
3.1 Spatial resolution and mixing effects the diagonal elements of tH&\;, averaging kernel matrix.

These are close to unity showing that bedrock topography
Inversion of synthetic data of the type shown in Flgcan is well resolved down the wavelengths comparable to one
be instructive and helpful in identifying problems with the mean ice thickness. The solid red curve is the sensitivity of
inversion method. However the usefulness of such an inverthe retrieval at given wavelength to white noise. The small
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Fig. 2. Frequency sensitivity of basal retrieval to surface data. The 5 ~*%%° \ 1
dashed lines, labelled-11, show the sensitivity of basal properties -0.01r 1

as functions of wavelength to true basal values at the same wave _g015

length. The solid lines &n) show the sensitivity of the retrieval as 0 % (h)

a function of wavelength to all wavelengths of the true basal condi-

tions. The difference between the solid and the dashed lines of same, : . , L i
g. 3. Point spread functions showing the sensitivity of basal re

colour is a measure for undesirable frequency mixing effects. Thetrieval to true basal perturbations. The upper panel shows in blue

red lines show the sensitivity of the estimate of basal topography tothe sensitivity of basal topography)(retrieval to point perturba-

the true basal topography, and the blue lines the sensitivity of estl-ti n in basal topography located-a£0, and in green the sensitivity

mated bas_al slipperiness to true basal _sllpperln_e_ss. The green A basal slipperiness) retrieval to point perturbation in slipperi-
the cyan lines represent further undesirable mixing effects where o
. . ; ) ness. The lower panel shows the degree of mixing between basal

bedrock perturbations affect estimates of basal slipperiness (cya : . . . .
pography and basal slipperiness in the retrieval. The blue curve in

lines) or where estimates of bedrock topography are contaminateg "~ panel is the sensitivity of the basal topography retrieval to

by variations in basal slipperiness. Thg f|ggre was calculated USIN5sal slipperiness, and the green curve is the sensitivity of the basal
a surface slope of 0.005 and mean slip ratio of 500. Surface mea-

surement locations were one ice thickness apart and surface da%ipperiness retrieval to point perturbation in basal topography. Val-
) i P . . _ues of all model parameters are same as those used 2. Fig.

errors were 1% of ice thickness and mean surface velocity. prior

values for basal topography and basal slipperiness were modelled

as first-order auto-regressive processes with decay length scales of . . . ..
257 and 10% errors. g P yend ence between the dashed and the solid cyan lines, this mixing

between basal slipperiness retrieval and basal topography is
combined with frequency mixing. Hence, sinusoidal pertur-

difference between the solid and the dashed red curves imt_)ations in basal topography are aliased into basal slipperi-

plies that frequency mixing is not a significant problem for r}ess perturba_\ti_onsb(to ¢ mixing) at different wavelengths
bedrock topography retrieval. (frequency mixing).

. . From Fig.2 it is not clear which frequencies of the sys-
The small difference between the dashed and the solid blu?em state %ontribute to frequency miging It is also d)i/ffi-
lines in Fig.2 shows that frequency mixing does not pose acult to visualise the spatial resolving power of the retrieval

prob_lem for b?‘sa'_ slipperiness _ref[rleval_elther. _quever themethod from a frequency-space representation such as the
spatial resolution is somewhat limited with sensitivity greater

. one in Fig.2. A different way of looking at the averaging
thgn 0.5 only for wavelengins larger than about 40-50 IC€ernels is to consider the “point spread functions” shown in
thicknesses. Fig. 3. The point spread functions represent the spatial, as

Mixing between different types of basal perturbations is gpposed to the frequency, sensitivity of the retrieval to a lo-
represented by the green and cyan curves in EigThese  calised point perturbations in system state. Figishows
dashed lines show the main diagonal elements ofAheand  four point spread functions corresponding to the sensitivity
the¢A, averaging kernels, respectively, while the solid lines of the basal topography retrieval to point perturbations in
are the sums of the rows. Significant mixing(Q.2) is only  basal topography (blue curve labelled bb in Ba) and basal
found in the’A;, kernel (solid cyan line in Fig2) and is lim-  slipperiness (blue curve labelled bc in Fap), and the sensi-
ited to wavelengths within a fairly narrow range of 20 to 40 tivity of the basal slipperiness retrieval to point perturbations
ice thicknesses. As can be seen from the substantial differin basal slipperiness (green curve labelled cc in B&).and
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[

T

A convenient measure of information on basal proper-
ties gained by surface measurements is the number of re-
solved basal parameters per measuring site at the surface. As
Eqg. 30) shows the total number of basal quantities resolved
by surface measurements equals the trace dfAheaverag-
ing kernel matrix. For both basal topography and basal slip-
periness the maximum number of resolved parameters is
and the maximum total number of resolved parameters there-
1 fore 21. The number of measuring sites at the surface,is
and at each of these sites we have three data values giving
the surface elevation and the horizontal and vertical velocity
1 component at that site. In the following we assume that the
number of measurement sites equals the number of locations

Data errors:

o
©

o
©

o
3

Data errors:

o
)

Basal
| topography

o
IS
T

o
w

o
)

Basal slipperiness,

number of resolved basal quantities per site
o
[6)]

0.1 J
along the bedline where estimates of basal quantities are to
0 107 1° 10" 10° be updated, that im=n. The number of resolved basal to-
distance between measurement sites (h) pography §”) and basal slipperinesg) quantities per mea-

surement site is then
Fig. 4. Number of resolved basal quantities per surface measure-_ .
ment site as a function of distance between sites. The red curvedfJ = —trbAb, (31)
show number of resolved basal topography quantities and the blue n
ones the number of resolved basal slipperiness quantities. Is is agnd
sumed that prior errors are 10% of mean values with decay Iength_c 1

of 25 mean ice thicknesses. dg = ;trcAc, (32)

respectively. If, for example, the number of resolved basal to-
basal topography (green curve labelled cb in Ba). Values pography quantities per measurement site is close to unity, all

of all relevant parameters such as average slope, data erro?é;h:;%zgeo?fssiﬁz a(;e r(;or;:”?ﬁgrq%ﬁégnggﬁ:ﬁgﬁg:i) :10
and data spacing are the same as in Eig. pography P '

The st diff . tial Luti f the basal t If this number is equal to 0.5, the sensitivity of the retrieval
€ strong difierences In spatial resolution ot the basal loy,, g\ ,iface data is equal to its sensitivity to prior information.

pography retri_eval in compar?son to that of the basal slipperi- It should be noted that there are number of other possi-
ness retrieval IS cle_arly seen in Fita. As_the flgure shows, a ble ways of quantifying the information content of the sur-
point perturbation in the system statehdk retrieved almost face measurements. One could for example define the in-
p(.arfectlly while the re_trieval of a point perturbation in basal formation content of surface measurements in terms of the
slipperiness retrieval is broad. reduction in entropy $hannon and Weavet949 Togneri

The degree of mixing between different types of basal per-ynq DeSilva 2003, in which case the difference between
turbations is shown in Figb. As Fig.2 showed ina different  he covariance of the MAP solution and the covariance of the
way, this type of mixing is not strong. In particular there is prior js taken as a measure of how much the measurements
almost no mixing with the basal slipperiness in the basal to-+aye affected our estimate of the system state. We calculated
pography retrieval. The green curve in F& shows that  the Shannon information content but found, as have other
point perturbation irb leads to some reduction in slipperi- g,thors (e.gPurser and Huand 993, that this measure of
ness in upstream direction from a bedrock disturbance and gformation has some undesirable properties. For example,

similar increases in downstream direction. despite being only of local influence, a single precise mea-
surement greatly alters this measure of information.
3.2 Number of resolved basal quantities Figure4 shows how data errors affect the number of re-

solved basal quantities per surface measurement site as a
Our discussion above on spatial resolution and mixing ef-function of distance between sites. Data errors are shown
fects was limited to one particular set of parameters definingas percentages of corresponding mean values. A 0.1% data
data errors and data spacing. All surface data errors wererror implies, as an example, @01z error in surface to-
1% of mean values or ice thickness and horizontal speed, andography and a.001: error in both horizontal and vertical
prior errors were set at 10% of mean thickness and mean slipvelocity components, whereis the mean surface speed. Ide-
periness with decay length scale equal to 25 ice thicknesseslly, the number of resolved quantities per site would be close
Furthermore, the spacing between measurement sites at thie unity. Note also that a slope of zero in Figrepresents
surface was equal to one mean ice thickness. We will nowa situation where the effect of reducing the spacing between
investigate the effects of surface data errors and spacing omeasurement sites is a directly proportional increase in the
the number of resolved basal quantities as given by 8J). (  total number of resolved basal quantities.
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distance between measurement sites (1) Fig. 6. Number of resolved basal topography (red curves) and basal

. b ved bedrock h di dslipperiness (blue curves) quantities as a function of distance be-
Fig. 5. _Num_ er of resolved bedroc topograp_ y (re mes)_ and yyeen measurement sites at the surface for different error estimates
basal slipperiness quantities (blue lines) per site as a function Ofor the prior basal topography. The thick and the thin curves were

distance between sites. The solid lines are for 1% errors in all dat%alculated given 1% and 30% uncertainty, respectively, in the prior
sets and corresponds to a situation wherne, andw are known to

a good accuracy. The other lines show the situation when ong of
u, or w is effectively unknown (50% errors). For the dotted lines

s, andw are known but: unknown. For the dash-dotted lines and . . ) .
the dashed linesy ands are not known, respectively. Note thatthe 1 he basal slipperiness retrieval can be expected to be im-

effect of data errors inv are so small that the corresponding line Proved when accurate prior information on basal topography
(dash-dotted blue line) is not visible under the thicker solid blue is available. Figuré shows the number or basal quantities
line. resolved by surface measurements for two different error es-

timates of prior basal topography. Comparison of the two

blue lines in that figure shows that improving the estimates

As Fig. 4 shows the number of resolved basal topographyof prior basal topography from 30% error level to 1% error

quantities per site only starts to drop significantly down from does indeed increase the number of resolved basal slipperi-
unity with reducing site spacing for spacing corresponding toness gquantities. However, that improvement is modest and
about one ice thicknesses, with exact values depending on thie increase i@ no larger than about 0.1 (Fig). We con-
size of data errors (Fig, red curves). For basal slipperiness, clude that a good prior knowledge of basal topography is not
on the other handi¢ is only larger than about 0.7 for spacing an essential requirement for successful retrieval of basal slip-
larger than 1@ if data errors are less than 0.1% (Figblue periness.

basal topography.

curves). . . The number of basal topography quantities resolved by
Figure 5 showd? andd¢ when one of the surface data the prior clearly must increase with decreasing prior errors.
types §, u, or w) is not known. Of the three data setsu, Hence the significant drop imf values with reduced errors

andw, not having information about the surface topographyin prior basal topography seen in Fig. Interestingly, the

(s) has the largest detrimental effect on theetrieval. How-  sensitivity of the basal topography retrieval to surface data is
ever, as the figure demonstrates knowledge of the surface tastill around 0.2 to 0.3 for site distances above one mean ice
pography is far from critical for the retrieval of basal topog- thickness for only 1% errors in prior basal topography (see
raphy. Almost identically many basal topography parameterg=ig. 6). Hence, it is important to solve for bothandc even

can be resolved in the absence of information about surfacevhen accurate independent estimates afe available. Not
topography from knowing the surface velocity vector alone. solving for b when basal topography is known corresponds
It is only for distances above about 20 ice thicknesses thato artificially suppressing the sensitivity of theretrieval to

not knowing the surface topography starts to significantly de-surface data to zero, whereas in fact, as Bighows, the ac-
grade the retrieval. A further interesting aspect of Figis tual sensitivity for just 1% prior errors ih is around 0.2 to
how unimportant the vertical velocity component)(is for 0.3. Ignoring this sensitivity will inevitably cause a bias in
the ¢ retrieval. In fact, not knowingw has such a small ef- thec estimate. The magnitude of this bias can be estimated
fect ond¢ that the corresponding blue coloured dash-dottedby considering the mixing terms of the kernel matti; .
curve in Fig.5, showingd¢ for s andu but notw known, is  From Eq. @9) and using Eq.Z6) we find that sensitivity of
not visible under the thicker solid blue curve gividgfor all the ¢ retrieval to prior estimates df is the negative ofAy.

of s, u andw known. As we have seen this mixing term can be as large as about
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0.3 for wavelengths between around 20 to 50 ice thicknessesn surface-to-bed retrieval on ice streams, over horizontal
with most of that contribution due to frequency mixing (see spatial scales that are large compared to the mean ice thick-
solid cyan curve in Fig2). We note that Fig2 was calcu-  ness, could be studied by using the transfer functions given
lated for aa};=0.1}_z and that the exact errors inretrieval  in Gudmundssoi2008. Doing so would require no essen-
due to incorrect error estimates for the prior basal topogratial modifications to the method as presented here. Including
phy will change somewhat as a functionaf Inspection of  finite-amplitude effects in combination with non-linear ice

*A, and its blocks shows that with decreasing prior errorsrheology and non-linear sliding law requires a fully numeri-
in basal topography the sensitivity of theetrieval to per- ~ cal treatment. This non-linear retrieval problem can, for ex-
turbations in true basal topography increases sharply and ca@mple, be solved using an iterative procedure where forward
easily become much larger than unity. model derivatives are approximated by the analytical trans-
The sensitivity of the retrieval of basal slipperiness andfer functions. The iterative step of such a method would be
basal stress to errors in basal topography was investigate@lmost identical to the method presented and used here. This
by Joughin et al(2004. They solved for basal shear stress €xtension of the method to non-linear rheology, non-linear
on|y, without a”owing for any variations in basal topogra_ Slldlng |aW, and finite-amplitude pel’turbations is the Subject
phy. Contrary to our findings they concluded that errors infuture paper (Raymond and Gudmundsson, 2008).
basal shear stress estimates did not increase markedly with Transfer functions for non-linear rheology and non-linear
errors in basal topography. Similar conclusions were drawrsliding have been calculated numerically Baymond and
by Vieli and Payne(2003 who inverted for basal slipperi- Gudmundsso(2009. Qualitatively, the effects of non-linear
ness with, and without, a simultaneous inversion for bedrock'heology and non-linear sliding on the retrieval can be es-
topography, and found that in both cases the resulting basdimated by comparing transfer functions calculated for both
slipperiness was quite similar. It is possible that the root ofthe linear and non-linear situations. For high slip ratiesy,
some of this difference might be in the use of different for- the effect of increasing the value of the stress exponent in
ward models.Joughin et al(2004 solved the shallow ice Glen’s flow law is an increase in the ratio between surface
stream equation for non-linear media while we solve the fulland bed topography (see Fig. 8tRaymond and Gudmunds-
Stokes system for linear media. However, it is also possibleson 2005 for more detail). For the ratio between surface
that this difference is related to difference in the way the seniopography and basal slipperiness the effect is, over most
sitivity experiments were performedloughin et al(2004  Wavelengths, the opposite and the (non-dimensional) ratio
solved the diagnostic equation for each change in input pabetween perturbations in surface topography and fractional
rameters. The prognostic equation was not used to ensur@ipperiness decreases with increasing value of the stress ex-
that both the rate of surface elevation changes and the suponent (see Fig. 9b iRaymond and Gudmundssd?005
face mass balance were within set limits. This is an approacfior more detail). This suggests that non-linear rheology may
followed by number of other authors (e.¥igli and Payne  improve the retrieval of basal topography but degrade slip-
2003. In this study we have assumed zero surface mass baPeriness retrieval. However, the picture is complicated by
ance and zero rate of surface change with time and have aé¢he fact that changing the value of the stress exponent also
cordingly calculated the steady state surface topography andffects surface velocity response to basal perturbations, and
surface velocities corresponding to zero surface mass balancedefinitive answer must await a fully non-linear treatment.
for any given change in basal quantities. It seems likely that The method is here only used for data along a flow line and
the sensitivities of retrieved basal quantities to errors in basafve have not considered the consequences of the transverse
topography when a) surface topography is held constant, andimenSion on retrieval. In particular, we empathise that the
when b) corresponding steady state surface topography igounds given above on the spatial resolution of basal slipper-
calculated, are not the same. The differences between o[jﬂeSS variations have been obtained for a flow-line inversion
conclusions and those dbugh|n et a|(20049 could, hence where transverse effects have been ignorEd. Perturbations in
be due to differences in the way the sensitivity of retrieval to basal slipperiness of final transverse width give rise to pat-
errors in basal topography is defined. terns of horizontal divergence and convergence (see Figs. 2,
5¢ and 5d irGudmundssarR003. Itis possible that in many
situations the resulting disturbance in horizontal flow veloci-
4 Limitations and possible extensions ties are large enough for perturbations in basal slipperiness of
finite width to be extracted from surface data with higher spa-
A key feature of the retrieval method is the use of analyt-tial resolution than suggested by the one-dimensional treat-
ical transfer functions, that describe the effects of small-ment given here. Based on the transfer characteristics (see
amplitude perturbations in basal conditions on surface gefig. 5b inGudmundsso2003 it seems, for example, quite
ometry and surface velocity, as a forward model. The transpossible that a transversal sinusoidal perturbation in basal
fer functions used here are solutions to the full Stokes sysslipperiness, i.e. with a crest that is aligned with the flow, can
tem and only valid for Newtonian media and a linear slid- be resolved from surface data down to a (transverse) wave-
ing law. However, the effects of a non-linear sliding law length considerably shorter than the limit of abouk Sven
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here for longitudinal perturbations. Further support for this The number of resolved basal topography quantities per
expectation comes frochoof(2004 who found thata nar- measurement site is close to unity down to a spacing between
row transversal perturbation in basal yield-stress on a persites of one:. For basal slipperiness the corresponding num-
fectly plastic ice stream can significantly affect the horizon- ber is generally much smaller and only larger than 0.6 for
tal velocity component at the surface (see Fig. 3&éhoof spacing larger than tel and for highly accurate measure-
2009 ments (data errors less than about 0.1% of mean values).
Finally, we have not considered the effects of finite- Accurate prior estimates of basal topography do not sig-
amplitude perturbations in basal properties, or the effectsificantly improve the retrieval of variations in basal slipper-
of form drag on the transmission of basal disturbances tdness. This does, however, not imply that measurements of
the surface. Our purpose here has been to give as generghsal topography are not useful in combination with surface-
a description of the surface-to-bed inverse problem as posto-bed inversion. Such independent information about basal
sible using an analytical approach. Finite-amplitude per-topography can be expected to be useful for both model val-
turbations are inherently non-linear, the superposition prin-idation purposes and prior error covariance modelling.
ciple does not apply and making general statements based The sensitivity of basal slipperiness retrieval to true basal
on an analytical approach is difficult. However, we do not topography increases sharply with decreasing prior errors in
expect finite-amplitude effects, or the effects of form drag, pasal topography. Not allowing for some variation in basal
to change our resultsRaymond and Gudmundss¢2003  topography when solving for spatial variations in basal slip-
found finite-amplitude effects not to Significantly affect the periness is equiva|ent to setting prior errors in basal topog-
bed-to-surface transmission characteristics for small to modraphy to zero. In this case, estimates of basal slipperiness
erate basal amplitudes. For example, for sinusoidal basal pegan be significantly affected by unmodelled errors in basal
turbations with a wavelength=5h, the analytical solutions  topography.
are correct to within a few percent for normalised bedrock

amplitudes Ab/@ and frf"‘Ctior_"al SlipperineS$C/C) am- AcknowledgementsiWe would like to thank M. Truffer and
plitudes up to @ for a slip ratio of 1000 (see Fig. 3lRay- A vieli for their helpful comments. R. C. A. Hindmarsh, R. Arth-
mond and GudmundsspR009. For large wavelengths the e, D. Vaughan and R. Anderson all provided critical reviews and
agreement is even better. These findings are in sharp conaluable comments during the preparation of the manuscript.
trast to conclusions drawn [8choof(2002 who argued that

some of the assumptions behind the analytical approach ifdited by: R. Greve

(Gudmundssor2003 start to be violated for bedrock ampli-

tudes as small as 0.2 m for 2000 m thick icestreams.
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