The Cryosphere, 4, 453–465, 2010
www.the-cryosphere.net/4/453/2010/
doi:10.5194/tc-4-453-2010
© Author(s) 2010. CC Attribution 3.0 License.

Freshwater flux to Sermilik Fjord, SE Greenland

1Climate, Ocean, and Sea Ice Modeling Group, Computational Physics and Methods (CCS-2), Los Alamos National Laboratory, New Mexico, USA
2Byrd Polar Research Center and School of Earth Sciences, Ohio State University, Ohio, USA
3Cooperative Institute for Research in the Atmosphere, Colorado State University, Colorado, USA
4Cooperative Institute for Research in Environmental Sciences, University of Colorado, Colorado, USA
5Department of Geography and Geology, University of Copenhagen, Denmark
6Geological Survey of Denmark and Greenland, Denmark

Received: 29 June 2010 – Published in The Cryosphere Discuss.: 30 July 2010
Revised: 13 October 2010 – Accepted: 16 October 2010 – Published: 26 October 2010

Abstract. Terrestrial inputs of freshwater flux to Sermilik Fjord, SE Greenland, were estimated, indicating ice discharge to be the dominant source of freshwater. A freshwater flux of 40.4 ± 4.9 × 109 m3 y−1 was found (1999–2008), with an 85% contribution originated from ice discharge (65% alone from Helheim Glacier), 11% from terrestrial surface runoff (from melt water and rain), 3% from precipitation at the fjord surface area, and 1% from subglacial geothermal and frictional melting due to basal ice motion. The results demonstrate the dominance of ice discharge as a primary mechanism for delivering freshwater to Sermilik Fjord. Time series of ice discharge for Helheim Glacier, Midgard Glacier, and Fenris Glacier were calculated from satellite-derived average surface velocity, glacier width, and estimated ice thickness, and fluctuations in terrestrial surface freshwater runoff were simulated based on observed meteorological data. These simulations were compared and bias corrected against independent glacier catchment runoff observations. Modeled runoff to Sermilik Fjord was variable, ranging from 2.9 ± 0.4 × 109 m3 y−1 in 1999 to 5.9 ± 0.9 × 109 m3 y−1 in 2005. The sub-catchment runoff of the Helheim Glacier region accounted for 25% of the total runoff to Sermilik Fjord. The runoff distribution from the different sub-catchments suggested a strong influence from the spatial variation in glacier coverage, indicating high runoff volumes, where glacier cover was present at low elevations.

1 Introduction

Global atmospheric temperatures showed a warming trend since the 1970s, and all years during the present century (2001–2008) have been among the warmest since the beginning of instrumental records (Allison et al., 2009). Surface air temperature observations reveal the strongest increase occurring over Northern Hemisphere land areas (40–70° N) since the 1970s; an increase almost twice the global average rate (IPCC, 2007), accompanied by a ∼1% decade−1 increase in precipitation (ACIA, 2005). However, for the past decades the strongest increases in temperature have been over the Arctic Ocean in autumn and winter, in response to loss of the insulating Arctic sea ice cover (Screen and Simmonds, 2010).

There is clear evidence of increased melting of the Greenland Ice Sheet (GrIS) and marginal glaciers in Greenland since the mid-1990s (e.g., Mote, 2007; Tedesco, 2007; Knudsen and Hasholt, 2008; Steffen et al., 2008), and rapid mass loss has been observed and simulated (e.g., Hanna et al., 2008; Allison et al., 2009; Khan et al., 2010). In a warming climate, we would expect an accelerating freshwater flux: ice discharge (calving) and runoff to the ocean, manifested by, e.g., decreasing ocean salinity, and increasing global eustatic sea level rise (e.g., ACIA, 2005; Box et al., 2006; IPCC, 2007; Mernild et al. 2011). A few freshwater runoff measurements are available for Greenland from the 1990s at the Sermilik Research Station, Sermilik Fjord (65° N), SE Greenland (Fig. 1), and at the Zackenberg Research Station, Young Sund/Tyroler Fjord (74° N), NE Greenland, and shorter term measurements are available.
Fig. 1. (a) Greenland, including the Sermilik Fjord simulation domain (120 350 km²) and area of interest (18 750 km²) in South East Greenland; (b) Sermilik Fjord with topography (300-m contour interval) and meteorological stations (see Table 1 for station information); and (c) MODIS satellite-derived surface characteristics (30 August 2009), including catchment (58 045 km²), watershed divide, and locations of GrIS outlet glaciers. The surface watershed divide is estimated based on the program RiverTools (http://www.rivertools.com/): a GIS application for analysis and visualization of digital terrain, watersheds, and river network.

This collection of extensive observations and model results from the Mittivakkat Glacier catchment was used to simulate the terrestrial surface runoff for the Sermilik Fjord (the study does not include ocean fluxes). Not only runoff but also ice discharge from e.g., the Helheim Glacier (one of the most conspicuous calving outlet glaciers from the GrIS) at the innermost part of the fjord, seems to be an important source of freshwater for both, the Sermilik Fjord and the Irminger Sea. We present a 10-year time series (1999–2008) of freshwater flux to the Sermilik Fjord in order to assess variability and trend thereof due to changes in air temperature, net precipitation (hereafter referred to as precipitation), and ice dynamics. In particular, we address the simulated temporal and spatial distribution of terrestrial surface freshwater runoff to the fjord and also on a sub-catchment scale. The runoff was simulated in SnowModel (Liston and Elder, 2006a; Mernild et al., 2006a) – a state-of-the-art modeling system, based on in situ meteorological data within the Sermilik Fjord area. Runoff was initially simulated for the Mittivakkat Glacier catchment area of ~18 km² and tested against observed runoff data from the Mittivakkat Glacier catchment outlet which is the only place in the Sermilik Fjord where runoff is observed. The simulated runoff was bias corrected against runoff observations, before runoff simulations were scaled up to the entire Sermilik Fjord catchment area. The following objectives are addressed: (1) assess the performance of SnowModel by comparing simulated runoff against observed runoff for the Mittivakkat Glacier catchment; (2) simulate the spatial runoff variability and...
quantify whether the annual freshwater runoff to the Sermilik Fjord has been increasing throughout the simulation period; (3) compare simulated runoff with observed Helheim ice discharge to illustrate the respective distribution from each freshwater source; and (4) merge different sources of freshwater input, e.g., simulated runoff, simulated precipitation over the fjord with satellite-derived ice discharge and geothermal and frictional melting due to basal ice motion to quantify the freshwater flux to the Sermilik Fjord.

2 Study area

2.1 Physical settings and climate

The Sermilik Fjord catchment (58 045 km2) is located on the east coast of Greenland (65° N, 37° W), connected to the Irminger Sea (Fig. 1a). The fjord is 1103 km2 in area, 85 km in length, and the largest fjord system in SE Greenland. The catchment drains a part of the GrIS, including the Helheim, Fenris, and Midgård Glaciers (the three major outlet glaciers in Sermilik Fjord catchment), and marginal glaciers, among these the Mittivakkat Glacier on Ammassalik Island (see Figs. 1c and 3a for location), where long-term monitoring of climate, mass-balance, and runoff was observed (Mernild and Hasholt, 2006; Knudsen and Hasholt, 2008). The Sermilik Fjord catchment ranges in elevation from sea level to ~2900 m a.s.l. The lower parts of the terrain (elevation below 700–1000 m a.s.l.) are dominated by exposed bedrock, sporadic thin soil layers, and sparse vegetation. Landscapes above 700–1000 m a.s.l. are mostly covered by glaciers and the GrIS (Fig. 1c). For the purposes of this study, the Sermilik Fjord catchment has been divided into seven sub-catchments, each draining into specific parts of the fjord. These areas also represent characteristic variations in glacier ice coverage from approximately 10% (area 2) to 87% (area 4) (Figs. 1c and 4).

The Sermilik Fjord region represents one of the most humid parts of Greenland (the zone of largest annual precipitation is located ~200 km further south). The simulated mean annual air temperature (MAAT, 2-m above the surface) for the full catchment including the GrIS was −4.8 °C (1999–2008), varying from around the freezing point at the near coastal stations (Tasilaq and Coast Stations) to around −19 °C on the GrIS (Station NASA-SE) (Fig. 2a). The total annual simulated precipitation (corrected after Allerup et al., 1998, 2000; for further information about the detailed precipitation correction procedures, see Mernild et al., 2009, 2010a) varied from ~1200 to ~1800 mm w.eq. y$^{-1}$ within the catchment. Our simulated precipitation values were almost in the same order of magnitude compared to spatial values (1958–2007 average) from Ettema et al. (2009) of 1000 up to 3000 mm w.eq. y$^{-1}$. Mean annual catchment relative humidity and wind speed were 83% and 4.1 m s$^{-1}$, respectively.

During summer, the low lying coastal areas, on, e.g., Ammassalik Island (approximately below 300 m a.s.l.), are influenced by air temperature inversions which are common in Arctic coastal landscapes, due to the effect of sea breezes associated with thermal differences between land and the frequently ice-choked fjord and ocean (e.g., Kozo, 1982; Weick and Rouse, 1991; Mernild and Liston, 2010). The climate and its seasonal variability are illustrated in Fig. 2b using positive summer air temperature lapse rates in the near coastal areas. Apart from this temperature inversion in the lower lying near coastal areas during summer, observed air temperature data from all seven stations in the Sermilik Fjord catchment (Fig. 1) showed constantly negative mean monthly temperature lapse rates, very similar to the high-elevation GrIS temperature lapse rates (Fig. 2a) (e.g., Steffen and Box, 2001; Mernild et al., 2009).
Table 1. Meteorological input data for the Sermilik Fjord simulation based on meteorological station data on the GrIS: KULU and NASA-SE (provided by University of Colorado at Boulder) and TAS_L and TAS_U (by Geological Survey of Denmark and Greenland (GEUS)), and from the outside the GrIS: Station Tasiilaq (by Danish Meteorological Institute (DMI)) and Station Coast and Station Nunatak (by University of Copenhagen, Department of Geography and Geology). The abbreviations indicate: (T) air temperature, (RH) relative humidity, (Ws) wind speed, (Wd) wind direction, and (P) precipitation. For station locations see Fig. 1b.

<table>
<thead>
<tr>
<th>Meteorological station</th>
<th>Location</th>
<th>Grid</th>
<th>Elevation (m a.s.l.)</th>
<th>Data period</th>
<th>Parameters</th>
<th>Operated by</th>
</tr>
</thead>
<tbody>
<tr>
<td>KULU</td>
<td>GrIS</td>
<td>65°45′ N; 39°36′ W</td>
<td>880</td>
<td>20 Jun 1999 – 13 Sep 2000</td>
<td>T_a, RH, Ws, and Wd</td>
<td>University of Colorado at Boulder</td>
</tr>
<tr>
<td>NASA-SE</td>
<td>GrIS</td>
<td>66°28′ N; 42°30′ W</td>
<td>2390</td>
<td>1 Jan 1999 – 25 May 2005</td>
<td>T_a, RH, Ws, and Wd</td>
<td>University of Colorado at Boulder</td>
</tr>
<tr>
<td>TAS_L</td>
<td>GrIS</td>
<td>65°38′ N; 38°54′ W</td>
<td>270</td>
<td>26 Jun 2006 – 31 Dec 2008</td>
<td>T_a, RH, Ws, and Wd</td>
<td>GEUS</td>
</tr>
<tr>
<td>TAS_U</td>
<td>GrIS</td>
<td>65°42′ N; 38°52′ W</td>
<td>580</td>
<td>16 Apr 2004 – 31 Dec 2008</td>
<td>T_a, RH, Ws, and Wd</td>
<td>GEUS</td>
</tr>
<tr>
<td>Tasiilaq</td>
<td>Outside GrIS</td>
<td>65°36′ N; 37°38′ W</td>
<td>44</td>
<td>1 Sep 1998 – 31 Aug 2009</td>
<td>T_a, RH, Ws, and Wd</td>
<td>DMI</td>
</tr>
<tr>
<td>Coast</td>
<td>Outside GrIS</td>
<td>65°41′ N; 37°55′ W</td>
<td>25</td>
<td>1 Jan 1999 – 31 Dec 2008</td>
<td>T_a, RH, Ws, and Wd</td>
<td>University of Copenhagen</td>
</tr>
<tr>
<td>Nunatak</td>
<td>Outside GrIS</td>
<td>65°42′ N; 37°49′ W</td>
<td>515</td>
<td>1 Jan 1999 – 31 Dec 2008</td>
<td>T_a, RH, Ws, and Wd</td>
<td>University of Copenhagen</td>
</tr>
</tbody>
</table>

3 Model description and satellite data

3.1 SnowModel and model simulations

SnowModel (Liston and Elder, 2006a), is a spatially-distributed snow-evolution, ice melt, and runoff modeling system designed to be applicable over a wide range of snow and glacier landscapes, and climates found around the world, where snow and ice variations play an important role in hydrological cycling (Mernild et al., 2006a; Mernild and Liston, 2010). For a detailed description of SnowModel, including its subprograms and tests see Liston and Elder (2006a, b), Liston et al. (2008), Liston and Hiemstra (2008), and Mernild and Liston (2010): MicroMet is a quasi-physically based meteorological distribution model, which defines the meteorological forcing conditions, EnBal calculates the surface energy exchanges, including melt, SnowPack simulates heat- and mass-transfer processes and snow-depth and water equivalent evolution, and SnowTran-3D is a blowing-snow model that accounts for snow redistribution by wind. SnowModel is a surface model simulating first-order effects of atmospheric forcing on snow, glacier ice, and runoff, but processes related to glacier dynamics are not included.

3.2 Input data, model bias correction, and uncertainties

Meteorological data of air temperature, relative humidity, wind speed, wind direction, and precipitation were obtained from seven meteorological stations at different elevations within the simulation domain (Fig. 1b). Four stations were located on the GrIS, and three outside the GrIS in the coastal region (Table 1). Simulations were preformed on a one-day time step, based on lapse rates, generated using observed data from all seven stations (Fig. 2b). The simulation period spans from 1 September 1998 through 31 August 2009, whereas output values were simulated for calendar years (1999–2008). Air temperature and precipitation data are summarized in Fig. 2a.

The Greenland topographic data at 625-m resolution from Bamber et al. (2001) was used with the image-derived correction published by Scambos and Haran (2002), and interpolated to a 500-m grid increment covering a 400.5 km simulation domain for the Sermilik Fjord catchment (Fig. 1a). The location of the Sermilik Fjord coastline, GrIS terminus, and marginal glaciers were estimated by using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images (observed on 30 August 2009). User-defined constants for SnowModel are shown in Mernild et al. (2009), and parameter definitions are given in Liston and Sturm (1998).

SnowModel simulated runoff was tested and bias corrected against observed runoff from the outlet of the Mittivakkat Glacier catchment for the period 1999–2005 (different observed runoff periods were used, due to variations in field campaign from year to year; Fig. 3a). The cumulative simulated runoff was initially underestimated by 34–43%, averaging 38% according to runoff observations (Fig. 2). Therefore, a linear regression ($r^2 = 0.95$; where r^2 is the explained variance) was used for runoff correction as shown in Fig. 3a. The corrected cumulative annual Mittivakkat Glacier runoff is illustrated in Fig. 3b. This underestimation of runoff is expected to be a mixture of various causes, where the first three are expected to be the main reasons: (1) uncertainties associated with model inputs (e.g., Mernild and Liston 2010); (2) unrepresented or poorly-represented processes in SnowModel (Liston and Elder 2006a, b); (3) uncertainties related to runoff observations (Hasholt et al., 2006; Mernild and Hasholt, 2009); and (4) englacial and subglacial water flow to/from neighboring glacier sub-catchments (see Mernild 2006; Mernild et al., 2006b; a description of the Mittivakkat Glacier watershed divides can be seen in Mernild and Hasholt (2006).
The assumed accuracy of single outlet discharge measurements is within 5–10%, whereas calculated stage-discharge values might deviate up to 25% from simultaneous manual measurements. However, long-term discharges (monthly and annual) are typically accurate within approximately 5–15% (Hasholt et al., 2006; Mernild and Hasholt, 2009). Statistical analysis from previous SnowModel studies on snow distributions, snow and glacier melt, and runoff from marginal glaciers in Greenland and the GrIS (e.g., Mernild et al., 2006a, 2009), along with uncertainties in observed discharge used for calibration, indicates that simulated influx of runoff to the Sermilik Fjord might be influenced by the same order of uncertainties: We assume an error of 10–25%. This includes uncertainties related to not using routines for air temperature inversion in low lying near coastal areas (Mernild and Liston, 2010) and the associated influence on snow and glacier ice melt and glacier mass-balance simulations; unfortunately no radiosonde data exist for the inner part of the Sermilik Fjord.

Even though SnowModel underestimated runoff by 38% on average before bias-correction, it is currently probably the most physically realistic model for simulating snow and ice melt, and water balance components, including freshwater runoff from snow- and ice-covered regions. The model demands limited input data, an important consideration in the Sermilik Fjord and other Arctic areas, for which data are sparse due to rough terrain, harsh climatic conditions, and remote location.

3.3 Satellite-derived ice discharge

Time series of ice flux to the calving front, which will equal the sum of ice lost to calving and melt at the calving face, and which we term discharge, for Helheim Glacier, Midgård Glacier, and Fenris Glacier were calculated from observed average surface velocity, glacier width and estimated ice thickness. Speeds were measured from automated Repeat-Image Feature Tracking (RIFT) using pairs of orthorectified images from: (1) Landsat 7 Enhanced Thematic Mapper Plus (panchromatic band) distributed by the United States Geological Survey; (2) visible to near-infrared bands of the Advanced Spaceborne Thermal Emissivity and reflection Radiometer (ASTER) distributed by the NASA Land Processes Distributed Active Archive (LP DAAC); and (3) SPOT-5 panchromatic images distributed through the SPIRIT program. Landsat and ASTER images have a pixel resolution of 15 m and the 5 m SPOT-5 images were down-sampled to 15 m for RIFT processing. The Multi-Image/Multi-Chip (MIMC) RIFT algorithm (Ahn and Howat, 2010) was used to measure surface displacements every 100 m. Individual displacement vectors were then averaged over a 1-km wide band near the front of the glacier to provide a time series of average velocity at the ice front. Errors in this velocity estimate are the sum of the ambiguity cross-correlation peak (typically 5 m) and errors in image co-registration, which can vary from several meters to several 10’s of meters, following manual registration correction procedures, depending on the image pair. Due to the high speeds observed, we assumed that speed was constant with ice depth. Averaged glacier width over the region of velocity sampling was obtained from 15-m Landsat imagery.

Ice thickness for Helheim Glacier was obtained in 2001 and 2008 by the University of Kansas Coherent Radar Depth Sounder (CoRDS) (Gogineni et al., 2001; Howat et al., 2005). For Fenris and Midgård glaciers, for which no thickness data are available, ice thickness at the start of the time series was estimated from the height of the calving front assuming a grounded ice front at hydrostatic equilibrium and densities of ice and sea water of 910 and 1027 kg m³, respectively. We assume an error of ±50 m in this thickness estimate. Changes in ice thickness through time were then measured from repeat ASTER digital elevation models produced by the LP DAAC and vertically co-registered using tie points over ice-free terrain. These data have a relative error of ±10 m in the vertical (Fujisada et al., 2005). Overall, we assume an ice discharge error of 15–25%.
3.4 Geothermal and frictional melting due to basal ice motion

The upper-bounds for the melt water generated through melting at the ice bed due to: (a) geothermal heating; and (b) frictional heating due to basal ice motion were estimated. For (a), it was liberally assumed that the bed was at the melting temperature over all regions with surface elevations below 1200 m.a.s.l., and area of 2300 km². A typical geothermal heat flux of 0.05 W m⁻² gives a basal melt rate of 5 mm w.eq. y⁻¹ (Cuffey and Paterson, 2010, p. 118) for ice at the melting temperature, totaling approximately 0.01×10⁹ m³ y⁻¹ produced by geothermal heating over this area, which was two orders of magnitude less than the contributions from runoff and ice discharge, and can therefore be ignored (Tables 2 and 3). For (b), the maximum rate of basal melt due to frictional heating caused by ice sliding over the bed is Eq. (1):

\[
m = (tb \times ub) / (\rho \times L_f)
\]

where, \(tb\) is the basal shear stress, \(ub\) is sliding speed, \(\rho\) is the ice density, and \(L_f\) is the latent heat of freezing/melting. Again, it was assumed that the bed was at the melting temperature over the drainage area with surface elevations below 1200 m.a.s.l. We also assumed that 100% of the ice motion needed to maintain mass balance (i.e., the balance velocity) was accomplished through basal sliding in this region. Balance velocities were obtained from Bamber et al. (2000). Finally, we assumed that the basal drag was equal to the driving stress, which we calculated from the ice thickness and surface elevation maps from Bamber et al. (2000, 2001). From this we obtain a total melt volume rate of approximately \(0.5 \times 10^9\) m³ y⁻¹, which is approximately 1% of the average total freshwater flux (Table 3).

4 Results and discussion

4.1 Terrestrial surface runoff to Sermilik Fjord

Annual (1999–2008) cumulative simulated runoff from all seven sub-catchments, and from the entire catchment, to Sermilik Fjord is shown in Fig. 4b. Total runoff to Sermilik Fjord for the modeled decade averaged \(4.6 \pm 0.7 \times 10^9\) m³ y⁻¹, from a minimum of \(2.9 \pm 0.4 \times 10^9\) m³ y⁻¹ in 1999 to a maximum of \(5.9 \pm 0.9 \times 10^9\) m³ y⁻¹ in 2005; these values were expected to be among the highest since the simulation period included the warmest years since the beginning of instrumental records. For the simulation period, data showed an average insignificant increase in runoff of \(1.0 \times 10^9\) m³ (\(r^2 = 0.14, p < 0.25\); where \(p\) level of significance) (Fig. 4b), due to a combination of both increasing annual precipitation (\(r^2 = 0.13\) and increasing mean annual summer air temperature (June through August) (\(r^2 = 0.32\), influencing the melting snow and ice conditions. An increase in precipitation for the Sermilik Fjord catchment of \(\sim 15\%\) decade⁻¹, which was above the average increase of \(\sim 1\%\) decade⁻¹ for the Arctic in general, estimated by ACIA (2005).

For the simulation period, 2007 showed the largest satellite-derived GrIS cumulative melt extent followed by 2005 (Steffen et al., 2008), but also the largest melt index – defined as the melting area times the number of melting days for areas above 2000 m in elevation (Tedesco, 2007) – followed by 2005 as the fourth highest for the simulation period. The largest amount of modeled runoff to the Sermilik Fjord occurred in 2005, and not in 2007 (Fig. 4b). This discrepancy between the GrIS melting conditions and the Sermilik Fjord runoff conditions was due to a record high annual precipitation for 2005 of \(\sim 180\) mm w.eq. y⁻¹ combined with the second highest mean annual summer air temperatures of 2.2 °C (Fig. 2a). The record high 2005 precipitation combined with the relatively high percentage of rain (\(\sim 65\%\) of the total annual precipitation) was the reason why less precipitation accumulated as snow during winter, and more streamened directly into the fjord as runoff. The connection between snow melting, melt water retention and refreezing within the snowpack, and runoff is described, e.g., in Hanna et al. (2008), Mernild et al. (2009) related to the variation in annual snow accumulation/precipitation.

Weather conditions for SE Greenland, including the Sermilik Fjord, are affected by low-pressure systems (e.g., Tsukernik et al., 2007), especially the associated wind and precipitation which varies due to year-to-year changes in the storm tracks. Most low pressure centers arrive from directions between south and west, steered by the “polar vortex”, an upper level cyclone. During winter these are normally centered over the Canadian Cold Pole and during summers they are less pronounced and centered over the Arctic Ocean (Hansen et al., 2008). Therefore, it should be kept in mind, even though maximum melting conditions occurred for the GrIS as in 2007, local variability in precipitation can be the reason for annual runoff peaks, as illustrated for the Sermilik Fjord catchment for 2005.

On a sub-catchment scale, the interannual runoff variability generally followed the variability of the overall runoff to the fjord, showing lowest runoff values in 1999 and highest values in 2005 (Fig. 4b). In Fig. 4b the spatial distribution of runoff to the Sermilik Fjord is illustrated, displaying that sub-area 7 contributed, on average, the lowest annual runoff volume of \(0.4 \pm 0.1 \times 10^9\) m³ y⁻¹ and sub-area 4 the highest value of \(1.4 \pm 0.2 \times 10^9\) m³ y⁻¹. Besides the general effect of precipitation and summer air temperatures on runoff from all sub-catchments, both the percentage of glacier cover and its hypsometry within each sub-catchment strongly influenced simulated runoff within the region. Generally, sub-catchments showing high fractions of glacier cover and glaciers at low elevations show stronger positive runoff effects during years with high temperatures (Fig. 4c).
The Sermilik Fjord accumulated catchment and sub-catchment runoff (1999–2008) are illustrated in Fig. 4c, showing an overall cumulative freshwater runoff volume of $46.0 \pm 6.9 \times 10^9$ m3. The lowest cumulative runoff contribution occurred from sub-area 7, with a total of $3.5 \pm 0.5 \times 10^9$ m3, which equalled about 8% of the overall freshwater runoff to the fjord. The highest contribution of $10.4 \pm 1.6 \times 10^9$ m3 came from sub-area 4 – the Helheim sub-catchment –, which equalled about 25% of the overall runoff. The percentage of cumulative freshwater runoff from the other sub-areas (area 1–3 and 5–6) averaged from 9% to 17% of the overall runoff (Fig. 4d). Obviously sub-catchments with the greatest glacier coverage, combined with the highest percentage of glaciers at low elevations, were the sub-areas where the greatest freshwater runoff contribution to the fjord occurred, and vice versa. In Fig. 4e the differences between sub-catchments 4 and 7 in glacier cover (km2) and in glacier cover (%) within each 100-m elevation interval are shown. Area 4 was the sub-catchment having the greatest glacier area of 910 km2 from where runoff occurred: $\sim30\%$ of the area was located below 500–600 m a.s.l. Area 7 was, however, a sub-catchment having a glacier cover of only 65 km2 of which only $\sim10\%$ was found below 500–600 m a.s.l. Areas 1–3 and 5–6 represent a mixture of the main characteristics found in areas 4 and 7. Even though areas 3 and 6 both have a relatively high glacier cover of 67% and 79%, respectively, the cumulative runoff only accounted for 14% and 9% of the overall runoff to the fjord (Fig. 4d). The reason for these
relatively low percentages of runoff values from sub-area 3 and 6 were due to the high elevated glacier cover within each sub-catchment. For sub-area 5 the situation was however different: In area 5 the amount of runoff accounted for 17% of the overall runoff to Sermilik Fjord, even though the sub-catchment area and the glacier cover area were relatively low. The reason for the relatively high runoff volume from sub-area 5 was because of the low elevated glacier cover in the sub-area.

In Fig. 5 the spatial distributions of annual cumulative runoff to Sermilik Fjord are illustrated for 1999 through 2008. Those parts of the fjord catchment exhibiting glaciers covering low altitudes, e.g., both marginal glaciers and the Helheim glacier terminus showed the highest simulated runoff values. At the Helheim glacier terminus the areally-averaged annual maximum runoff ranged from ∼1.8 m w.eq. in 2003 to more than ∼3.8 m w.eq. in 2007. Simulated runoff values which seemed to be in line with previously published values, e.g., by Ettama et al. (2008), and consistent with previous GrIS runoff simulations by Mernild et al. (2009). The amount of simulated runoff decreased with increasing altitude, on average by ∼250 mm w.eq. 100 m$^{-1}$ from the ice margin all the way to the boundary where runoff occurs (Fig. 5); for the Jakobshavn drainage area, W Greenland (69° N), the value was similar with ∼220 mm w.eq. 100 m$^{-1}$ (Mernild et al., 2010b). On the GrIS within the Sermilik Fjord catchment (for a latitude range of 65–66° N) this annual runoff boundary line was located about 25–40 km from the GrIS terminus at an elevation of 1140 m a.s.l. to 1600 m a.s.l., averaging 1150 ± 140 m a.s.l.

4.2 Freshwater flux to Sermilik Fjord

To account for the freshwater flux to the Sermilik Fjord, not only terrestrial surface runoff needs to be addressed, but also: (1) ice discharge influenced by GrIS dynamical processes (as described by Howat et al., 2005, 2008) and temperature of near-coastal ocean currents (Holland et al., 2008; Straneo et al., 2010); (2) seasonal changes in internal drainage system due to melting; (3) runoff from subglacial geothermal melting and frictional melting due to basal ice motion; (4) submarine melting at tidewater glacier margins; and (5) precipitation (e.g., rain and snow accumulation on sea ice) at the Sermilik Fjord surface area. Unfortunately, seasonal changes in internal drainage system was omitted, due to missing data (values probably insignificant related to the overall terrestrial freshwater flux budget to the Sermilik Fjord), while submarine melting at tidewater glacier margins was integrated in the ice discharge values. Contributions of ice discharge from minor GrIS outlet glaciers, e.g., glaciers located in Johan Petersens Fjord were ignored due to lack of available data (only a minor production of icebergs has been observed; personal communication, N. T. Knudsen, 2010), while ice discharge from the three major outlet glaciers: the Helheim Glacier, Fenris Glacier, and Midgård Glacier at the innermost part of the fjord were included (Figs. 6 and 7). Based on satellite-derived observations, the Helheim average ice discharge for the period 1999–2008, was estimated to be $25.9 \pm 2.6 \times 10^9$ m3 w.eq. y$^{-1}$ (Tables 2 and 3), and for the Fenris and Midgård Glaciers ice discharge were 2.5 ± 0.5 and $5.5 \pm 1.0 \times 10^9$ m3 w.eq. y$^{-1}$, respectively (Table 3 and Fig. 6). In Fig. 6 an example of variations in surface ice velocity, ice thickness, and
Fig. 6. Satellite-derived time series for the period 1998–2008 of ice velocity, ice thickness, and ice discharge at a stationary flux gate within 3 km of the most-retreated front position of the three major outlet glaciers: Helheim Glacier, Fenris Glacier, and Midgård Glacier draining into the Sermilik Fjord. Ice thickness observations (denoted by vertical error bars) were linearly interpolated, denoted by the curve, and multiplied by constant glacier width and observations of ice velocity and the ratio of water and ice densities (0.91) to obtain discharge of water. Ice discharge data for Helheim Glacier reported here are updated from Howat et al. (2005, 2007). Fenris and Midgård Glaciers are located in sub-area 3 and Helheim in sub-area 4.

Fig. 7. Average monthly ice discharge observations (closed circle) and linearly-interpolated values (open circle) for Helheim Glacier, Fenris Glacier, and Midgård Glacier, and sum of the three glaciers for the period 1999 through 2008.

ice discharge for the Helheim Glacier, Fenris Glacier, and Midgård Glacier are illustrated, showing substantial variations in velocity, ice thickness, and discharge, with a general increase in velocity and discharge after 2002 and peaking in 2005 and 2006. Due to both decreased ice velocity and thickness, ice discharge at Helheim Glacier decreased to earlier levels by 2007 (Howat et al., 2007). However, for the simulation period, ice discharge from the three major outlet glaciers showed an average significant increase of 1.32×10^9 m3 w.eq. ($r^2 = 0.49; p < 0.01$) (Fig. 7). Mean annual ice discharge values were combined with annual SnowModel simulated precipitation at the Sermilik Fjord surface area, terrestrial surface runoff, and subglacial geothermal and frictional melting, to deduce the freshwater flux: (1) from the Helheim Glacier catchment (Table 2), but also; (2) to the entire Sermilik Fjord (Table 3). Calculations
Table 2. Freshwater flux from the Helheim Glacier catchment based on SnowModel simulated freshwater runoff and satellite-derived ice discharge.

<table>
<thead>
<tr>
<th></th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnowModel simulated runoff from the Helheim Glacier catchment including error (sub-area 4), 10^3 m3 y$^{-1}$</td>
<td>0.7 ± 0.1</td>
<td>1.1 ± 0.2</td>
<td>0.8 ± 0.1</td>
<td>1.1 ± 0.2</td>
<td>0.7 ± 0.1</td>
<td>1.2 ± 0.2</td>
<td>1.3 ± 0.2</td>
<td>1.1 ± 0.2</td>
<td>1.3 ± 0.2</td>
<td>1.0 ± 0.2</td>
<td>1.0 ± 0.2 (4%)</td>
</tr>
<tr>
<td>Satellite-derived ice discharge from the Helheim Glacier including error, 10^3 m3 y$^{-1}$</td>
<td>21.7 ± 3.3</td>
<td>22.7 ± 2.5</td>
<td>21.8 ± 2.2</td>
<td>26.8 ± 2.3</td>
<td>28.1 ± 3.8</td>
<td>32.0 ± 2.5</td>
<td>33.8 ± 2.8</td>
<td>25.9 ± 1.8</td>
<td>25.9 ± 2.1</td>
<td>24.3 ± 2.8</td>
<td>25.9 ± 2.6 (96%)</td>
</tr>
<tr>
<td>Freshwater flux from the Helheim Glacier catchment, 10^3 m3 y$^{-1}$</td>
<td>22.4 ± 3.4</td>
<td>23.8 ± 2.7</td>
<td>22.6 ± 2.3</td>
<td>27.9 ± 2.5</td>
<td>28.8 ± 3.9</td>
<td>29.2 ± 2.7</td>
<td>35.1 ± 3.0</td>
<td>27.0 ± 2.0</td>
<td>27.2 ± 2.3</td>
<td>25.3 ± 3.0</td>
<td>26.9 ± 2.8</td>
</tr>
</tbody>
</table>

Table 3. Freshwater flux to the Sermilik Fjord based on SnowModel simulated freshwater runoff, precipitation at the Sermilik Fjord surface area, subglacial geothermal melting and subglacial frictional melting due to basal ice motion, and satellite-derived ice discharge from the Helheim Glacier, Fenris Glacier, and Midgård Glacier (the three major outlet glaciers in Sermilik Fjord catchment). Mean freshwater flux to the Sermilik Fjord is calculated based on mean values from each input component.

<table>
<thead>
<tr>
<th></th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnowModel simulated terrestrial runoff to the Sermilik Fjord including error, 10^3 m3 y$^{-1}$</td>
<td>2.9 ± 0.4</td>
<td>5.1 ± 0.8</td>
<td>4.1 ± 0.6</td>
<td>5.2 ± 0.8</td>
<td>3.5 ± 0.5</td>
<td>5.2 ± 0.8</td>
<td>5.9 ± 0.9</td>
<td>5.1 ± 0.8</td>
<td>4.8 ± 0.7</td>
<td>4.2 ± 0.6</td>
<td>4.6 ± 0.7 (11%)</td>
</tr>
<tr>
<td>SnowModel simulated precipitation (e.g., rain and snow accumulation on sea ice) at the Sermilik Fjord surface area (1103 km2) including error, 10^3 m3 y$^{-1}$</td>
<td>0.9 ± 0.1</td>
<td>1.2 ± 0.1</td>
<td>1.7 ± 0.1</td>
<td>1.7 ± 0.1</td>
<td>1.4 ± 0.1</td>
<td>1.4 ± 0.1</td>
<td>1.8 ± 0.1</td>
<td>1.4 ± 0.1</td>
<td>1.5 ± 0.1</td>
<td>1.3 ± 0.1</td>
<td>1.4 ± 0.1 (3%)</td>
</tr>
<tr>
<td>Subglacial geothermal melting, 10^3 m3 y$^{-1}$</td>
<td>0.01</td>
<td>0.01 (>0.03%)</td>
</tr>
<tr>
<td>Subglacial frictional melting due to basal ice motion, 10^3 m3 y$^{-1}$</td>
<td>0.5</td>
<td>0.5 (1%)</td>
</tr>
<tr>
<td>Satellite-derived ice discharge from the Helheim Glacier including error, 10^3 m3 y$^{-1}$</td>
<td>21.7 ± 3.3</td>
<td>22.7 ± 2.5</td>
<td>21.8 ± 2.2</td>
<td>26.8 ± 2.3</td>
<td>28.1 ± 3.8</td>
<td>32.0 ± 2.5</td>
<td>33.8 ± 2.8</td>
<td>25.9 ± 1.8</td>
<td>25.9 ± 2.1</td>
<td>24.3 ± 2.8</td>
<td>25.9 ± 2.6 (65%)</td>
</tr>
<tr>
<td>Satellite-derived ice discharge from the Fenris Glacier including error, 10^3 m3 y$^{-1}$</td>
<td>–</td>
<td>2.3 ± 0.5</td>
<td>2.5 ± 0.5</td>
<td>2.6 ± 0.5</td>
<td>2.8 ± 0.5</td>
<td>2.9 ± 0.5</td>
<td>2.8 ± 0.5</td>
<td>2.2 ± 0.5</td>
<td>2.5 ± 0.5</td>
<td>2.4 ± 0.5</td>
<td>2.5 ± 0.5 (6%)</td>
</tr>
<tr>
<td>Satellite estimated ice discharge from the Midgård Glacier including error, 10^3 m3 y$^{-1}$</td>
<td>–</td>
<td>3.7 ± 0.7</td>
<td>3.9 ± 0.8</td>
<td>3.6 ± 0.7</td>
<td>4.2 ± 0.8</td>
<td>6.1 ± 1.0</td>
<td>7.9 ± 1.2</td>
<td>7.3 ± 1.2</td>
<td>7.5 ± 1.2</td>
<td>–</td>
<td>5.5 ± 1.0 (14%)</td>
</tr>
<tr>
<td>Freshwater flux to the Sermilik Fjord, 10^3 m3 y$^{-1}$</td>
<td>–</td>
<td>35.5 ± 4.6</td>
<td>34.5 ± 4.2</td>
<td>40.4 ± 4.4</td>
<td>40.5 ± 5.7</td>
<td>44.1 ± 4.9</td>
<td>52.7 ± 5.5</td>
<td>42.4 ± 4.4</td>
<td>42.7 ± 4.6</td>
<td>–</td>
<td>40.4 ± 4.9</td>
</tr>
</tbody>
</table>

showed a freshwater flux averaging $26.9 ± 2.8 \times 10^9$ m3 y$^{-1}$ from the Helheim Glacier sub-catchment, and a flux of $40.4 ± 4.9 \times 10^9$ m3 y$^{-1}$ to the Sermilik Fjord for 1999–2008. The suggested freshwater flux entering the Sermilik Fjord of $40.4 ± 4.9 \times 10^9$ m3 y$^{-1}$, equaled 5% of the freshwater flux of 786×10^9 m3 y$^{-1}$ (1995–2007) from the entire GrIS to the ocean (Mernild et al., 2009). For the Helheim Glacier catchment, around $25.9 ± 2.6 \times 10^9$ m3 y$^{-1}$ (96%) originated from satellite-derived ice discharge, and $1.0 ± 0.2 \times 10^9$ m3 y$^{-1}$ (4%) from SnowModel simulated runoff. For Sermilik Fjord $4.6 ± 0.7 \times 10^9$ m3 y$^{-1}$ (11%) out of a freshwater flux of $40.4 ± 4.9 \times 10^9$ m3 y$^{-1}$, originated from the SnowModel simulated runoff, $1.4 ± 0.1 \times 10^9$ m3 y$^{-1}$ (3%) from the SnowModel simulated precipitation at the Sermilik Fjord surface area, $33.9 ± 4.1 \times 10^9$ m3 y$^{-1}$ (85%) from ice discharge, and $0.5 ± 0.2 \times 10^9$ m3 y$^{-1}$ (1%) from subglacial frictional melting due to basal ice motion (Table 3). In general, ice discharge represented 65%, 14%, and 6% of the total freshwater flux from Helheim, Midgård, and Fenris glaciers, respectively (Table 3). For GrIS in total, around half of the mass loss originated by surface melting and subsequent freshwater runoff into the ocean, and the other half from iceberg calving and geothermal melting (e.g., Rignot and Kanagaratnam 2006, Lemke et al. 2007, Mernild et al. 2008c).
The Helheim Glacier represents one of the major outlet glaciers from the GrIS, which dominated 65% of the freshwater flux into Sermilik Fjord. Runoff only forms a minor part (11%) of the overall freshwater flux to the fjord. Similar conditions were found for the Jakobshavn drainage area (2000–2007), where 7% of the average annual freshwater flux originated from surface runoff (Mernild et al., 2010b). For two of the major GrIS outlet glacier sub-catchments (Helheim and Jakobshavn) it can be concluded that runoff was a minor contributor to the freshwater flux, which was highly dominated by ice discharge.

5 Summary and conclusion

The amount of freshwater runoff reaching the ocean from marginal glaciers, the GrIS, and ice free landscapes depends on the precipitation and storage changes in reservoirs of ice, snow, and water on land. In many places around Greenland, glaciers calve directly into the sea and the overall flux of freshwater from specific catchments, e.g., the Sermilik Fjord catchment, will be influenced by or even dominated by a discharge of calving ice. At the Sermilik Fjord catchment, 85% of the average annual freshwater flux of \(40.4 \pm 4.9 \times 10^3 \text{ m}^3\text{y}^{-1}\) (1999–2008) originated from ice discharge (65% alone from the Helheim Glacier), 11% from terrestrial surface runoff, 3% from net precipitation at the fjord area, and 1% from subglacial frictional melting. Ice discharge is the primary mechanism for delivering freshwater to Sermilik Fjord. In period of a warmer climate, as for example during the recent decade an increase in runoff \((r^2 = 0.14)\) and ice discharge \((r^2 = 0.49)\) occurred. The Sermilik Fjord increasing runoff was caused by both increasing mean annual summer air temperature and precipitation; even though maximum melting conditions occurred in 2007, local variability in precipitation can be the reason for annual runoff peaks, as illustrated for the Sermilik Fjord for 2005.

Acknowledgements. Special thanks to the Danish Meteorological Institute, the Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado at Boulder, the Department of Geography and Geology, University of Copenhagen, and the Geological Survey of Denmark and Greenland (GEUS) for use of observed meteorological data. Further, thanks to the Department of Geography and Geology, University of Copenhagen, for use of observed runoff data. Thanks are also given to Byrd Polar Research Center, Ohio State University, for use of satellite-derived ice discharge. This work was supported by grants from the Climate Change Prediction Program within the US Department of Energy’s Office of Science. Los Alamos National Laboratory is operated under the auspices of the National Nuclear Security Administration of the US Department of Energy under Contract No. DE-AC52-06NA25396.

Edited by: S. Dery

References

