Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 4, issue 4
The Cryosphere, 4, 545–559, 2010
https://doi.org/10.5194/tc-4-545-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 4, 545–559, 2010
https://doi.org/10.5194/tc-4-545-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Dec 2010

Research article | 02 Dec 2010

Understanding snow-transport processes shaping the mountain snow-cover

R. Mott et al.
Related subject area  
Snow Hydrology
Seasonal components of freshwater runoff in Glacier Bay, Alaska: diverse spatial patterns and temporal change
Ryan L. Crumley, David F. Hill, Jordan P. Beamer, and Elizabeth R. Holzenthal
The Cryosphere, 13, 1597–1619, https://doi.org/10.5194/tc-13-1597-2019,https://doi.org/10.5194/tc-13-1597-2019, 2019
Short summary
Hydrologic flow path development varies by aspect during spring snowmelt in complex subalpine terrain
Ryan W. Webb, Steven R. Fassnacht, and Michael N. Gooseff
The Cryosphere, 12, 287–300, https://doi.org/10.5194/tc-12-287-2018,https://doi.org/10.5194/tc-12-287-2018, 2018
Short summary
Snowmelt response to simulated warming across a large elevation gradient, southern Sierra Nevada, California
Keith N. Musselman, Noah P. Molotch, and Steven A. Margulis
The Cryosphere, 11, 2847–2866, https://doi.org/10.5194/tc-11-2847-2017,https://doi.org/10.5194/tc-11-2847-2017, 2017
Short summary
A continuum model for meltwater flow through compacting snow
Colin R. Meyer and Ian J. Hewitt
The Cryosphere, 11, 2799–2813, https://doi.org/10.5194/tc-11-2799-2017,https://doi.org/10.5194/tc-11-2799-2017, 2017
Short summary
Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment
Emmy E. Stigter, Niko Wanders, Tuomo M. Saloranta, Joseph M. Shea, Marc F. P. Bierkens, and Walter W. Immerzeel
The Cryosphere, 11, 1647–1664, https://doi.org/10.5194/tc-11-1647-2017,https://doi.org/10.5194/tc-11-1647-2017, 2017
Cited articles  
Bellaire, S. and Schweizer, J.: Measuring spatial variations of weak layer and slab properties with regard to snow slope stability, Cold Reg. Sci. Technol., https://doi.org/10.1016/j.coldregions.2010.08.013, in press, 2010.
Bernhardt, M., Liston, G. E., Strasser, U., Zängl, G., and Schulz, K.: High resolution modelling of snow transport in complex terrain using downscaled MM5 wind fields, The Cryosphere, 4, 99–113, https://doi.org/10.5194/tc-4-99-2010, 2010.
Chamecki, M., Meneveau, C., and Parlange, M. B.: A hybrid spectral/finite-volume algorithm for large eddy simulation of scalars in the atmospheric boundary layer, Bound.-Lay. Meteorol., 128(3), 473–484, 2008.
Clifton, A. and Lehning, M.: Improvement and validation of a snow saltation model using wind tunnel measurements, Earth Surf. Proc. Land., 33, 2156–2173, 2008.
Dadic, R., Mott, R., Lehning, M., and Burlando, P.: Wind influence on snow depth distribution and accumulation over glaciers, J. Geophys. Res., 115, F01012, https://doi.org/10.1029/2009JF001261, 2010a.
Publications Copernicus
Download
Citation