Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 4, issue 1
The Cryosphere, 4, 67-75, 2010
https://doi.org/10.5194/tc-4-67-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 4, 67-75, 2010
https://doi.org/10.5194/tc-4-67-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

  29 Jan 2010

29 Jan 2010

Forecasting temperate alpine glacier survival from accumulation zone observations

M. S. Pelto M. S. Pelto
  • Environmental Sciences, Nichols College, Dudley, MA 01571, USA

Abstract. Temperate alpine glacier survival is dependent on the consistent presence of an accumulation zone. Frequent low accumulation area ratio values, below 30%, indicate the lack of a consistent accumulation zone, which leads to substantial thinning of the glacier in the accumulation zone. This thinning is often evident from substantial marginal recession, emergence of new rock outcrops and surface elevation decline in the accumulation zone. In the North Cascades 9 of the 12 examined glaciers exhibit characteristics of substantial accumulation zone thinning; marginal recession or emergent bedrock areas in the accumulation zone. The longitudinal profile thinning factor, f, which is a measure of the ratio of thinning in the accumulation zone to that at the terminus, is above 0.6 for all glaciers exhibiting accumulation zone thinning characteristics. The ratio of accumulation zone thinning to cumulative mass balance is above 0.5 for glacier experiencing substantial accumulation zone thinning. Without a consistent accumulation zone these glaciers are forecast not to survive the current climate or future additional warming. The results vary considerably with adjacent glaciers having a different survival forecast. This emphasizes the danger of extrapolating survival from one glacier to the next.

Publications Copernicus
Download
Citation
Share