Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 5, issue 2
The Cryosphere, 5, 377–390, 2011
https://doi.org/10.5194/tc-5-377-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 5, 377–390, 2011
https://doi.org/10.5194/tc-5-377-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 May 2011

Research article | 16 May 2011

The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet

M. R. van den Broeke, C. J. P. P. Smeets, and R. S. W. van de Wal M. R. van den Broeke et al.
  • Institute for Marine and Atmospheric research (IMAU), Utrecht University, P.O. Box 80005, 3508TA Utrecht, The Netherlands

Abstract. We present the seasonal cycle and interannual variability of the surface energy balance (SEB) in the ablation zone of the west Greenland ice sheet, using seven years (September 2003–August 2010) of hourly observations from three automatic weather stations (AWS). The AWS are situated along the 67° N latitude circle at elevations of 490 m a.s.l. (S5), 1020 m a.s.l. (S6) and 1520 m a.s.l. (S9) at distances of 6, 38 and 88 km from the ice sheet margin. The hourly AWS data are fed into a model that calculates all SEB components and melt rate; the model allows for shortwave radiation penetration in ice and time-varying surface momentum roughness. Snow depth is prescribed from albedo and sonic height ranger observations. Modelled and observed surface temperatures for non-melting conditions agree very well, with RMSE's of 0.97–1.26 K. Modelled and observed ice melt rates at the two lowest sites also show very good agreement, both for total cumulative and 10-day cumulated amounts. Melt frequencies and melt rates at the AWS sites are discussed. Although absorbed shortwave radiation is the most important energy source for melt at all three sites, interannual melt variability at the lowest site is driven mainly by variability in the turbulent flux of sensible heat. This is explained by the quasi-constant summer albedo in the lower ablation zone, limiting the influence of the melt-albedo feedback, and the proximity of the snow free tundra, which heats up considerably in summer.

Publications Copernicus
Download
Citation