Research article
06 Dec 2012
Research article | 06 Dec 2012
The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier
T. Mölg et al.
Related authors
Reanalysis of a 10-year record (2004–2013) of seasonal mass balances at Langenferner/Vedretta Lunga, Ortler Alps, Italy
Stephan Peter Galos, Christoph Klug, Fabien Maussion, Federico Covi, Lindsey Nicholson, Lorenzo Rieg, Wolfgang Gurgiser, Thomas Mölg, and Georg Kaser
The Cryosphere, 11, 1417–1439, https://doi.org/10.5194/tc-11-1417-2017,https://doi.org/10.5194/tc-11-1417-2017, 2017
Evaluation of gridding procedures for air temperature over Southern Africa
Kai-Uwe Eiselt, Frank Kaspar, Thomas Mölg, Stefan Krähenmann, Rafael Posada, and Jens O. Riede
Adv. Sci. Res., 14, 163–173, https://doi.org/10.5194/asr-14-163-2017,https://doi.org/10.5194/asr-14-163-2017, 2017
Short summary
Climatic controls and climate proxy potential of Lewis Glacier, Mt. Kenya
R. Prinz, L. I. Nicholson, T. Mölg, W. Gurgiser, and G. Kaser
The Cryosphere, 10, 133–148, https://doi.org/10.5194/tc-10-133-2016,https://doi.org/10.5194/tc-10-133-2016, 2016
Short summary
Impact of debris cover on glacier ablation and atmosphere–glacier feedbacks in the Karakoram
E. Collier, F. Maussion, L. I. Nicholson, T. Mölg, W. W. Immerzeel, and A. B. G. Bush
The Cryosphere, 9, 1617–1632, https://doi.org/10.5194/tc-9-1617-2015,https://doi.org/10.5194/tc-9-1617-2015, 2015
Short summary
Reanalysis of a 10-year record (2004–2013) of seasonal mass balances at Langenferner/Vedretta Lunga, Ortler Alps, Italy
Stephan Peter Galos, Christoph Klug, Fabien Maussion, Federico Covi, Lindsey Nicholson, Lorenzo Rieg, Wolfgang Gurgiser, Thomas Mölg, and Georg Kaser
The Cryosphere, 11, 1417–1439, https://doi.org/10.5194/tc-11-1417-2017,https://doi.org/10.5194/tc-11-1417-2017, 2017
Evaluation of gridding procedures for air temperature over Southern Africa
Kai-Uwe Eiselt, Frank Kaspar, Thomas Mölg, Stefan Krähenmann, Rafael Posada, and Jens O. Riede
Adv. Sci. Res., 14, 163–173, https://doi.org/10.5194/asr-14-163-2017,https://doi.org/10.5194/asr-14-163-2017, 2017
Short summary
Climatic controls and climate proxy potential of Lewis Glacier, Mt. Kenya
R. Prinz, L. I. Nicholson, T. Mölg, W. Gurgiser, and G. Kaser
The Cryosphere, 10, 133–148, https://doi.org/10.5194/tc-10-133-2016,https://doi.org/10.5194/tc-10-133-2016, 2016
Short summary
Impact of debris cover on glacier ablation and atmosphere–glacier feedbacks in the Karakoram
E. Collier, F. Maussion, L. I. Nicholson, T. Mölg, W. W. Immerzeel, and A. B. G. Bush
The Cryosphere, 9, 1617–1632, https://doi.org/10.5194/tc-9-1617-2015,https://doi.org/10.5194/tc-9-1617-2015, 2015
Short summary
Related subject area
Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations
Yvan Orsolini, Martin Wegmann, Emanuel Dutra, Boqi Liu, Gianpaolo Balsamo, Kun Yang, Patricia de Rosnay, Congwen Zhu, Wenli Wang, Retish Senan, and Gabriele Arduini
The Cryosphere, 13, 2221–2239, https://doi.org/10.5194/tc-13-2221-2019,https://doi.org/10.5194/tc-13-2221-2019, 2019
Short summary
Contributions of advection and melting processes to the decline in sea ice in the Pacific sector of the Arctic Ocean
Haibo Bi, Qinghua Yang, Xi Liang, Liang Zhang, Yunhe Wang, Yu Liang, and Haijun Huang
The Cryosphere, 13, 1423–1439, https://doi.org/10.5194/tc-13-1423-2019,https://doi.org/10.5194/tc-13-1423-2019, 2019
Short summary
Potential faster Arctic sea ice retreat triggered by snowflakes' greenhouse effect
Jui-Lin Frank Li, Mark Richardson, Wei-Liang Lee, Eric Fetzer, Graeme Stephens, Jonathan Jiang, Yulan Hong, Yi-Hui Wang, Jia-Yuh Yu, and Yinghui Liu
The Cryosphere, 13, 969–980, https://doi.org/10.5194/tc-13-969-2019,https://doi.org/10.5194/tc-13-969-2019, 2019
Short summary
Variability in individual particle structure and mixing states between the glacier–snowpack and atmosphere in the northeastern Tibetan Plateau
Zhiwen Dong, Shichang Kang, Dahe Qin, Yaping Shao, Sven Ulbrich, and Xiang Qin
The Cryosphere, 12, 3877–3890, https://doi.org/10.5194/tc-12-3877-2018,https://doi.org/10.5194/tc-12-3877-2018, 2018
Short summary
Evaluation of the CloudSat surface snowfall product over Antarctica using ground-based precipitation radars
Niels Souverijns, Alexandra Gossart, Stef Lhermitte, Irina V. Gorodetskaya, Jacopo Grazioli, Alexis Berne, Claudio Duran-Alarcon, Brice Boudevillain, Christophe Genthon, Claudio Scarchilli, and Nicole P. M. van Lipzig
The Cryosphere, 12, 3775–3789, https://doi.org/10.5194/tc-12-3775-2018,https://doi.org/10.5194/tc-12-3775-2018, 2018
Short summary
Melting over the northeast Antarctic Peninsula (1999–2009): evaluation of a high-resolution regional climate model
Rajashree Tri Datta, Marco Tedesco, Cecile Agosta, Xavier Fettweis, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 12, 2901–2922, https://doi.org/10.5194/tc-12-2901-2018,https://doi.org/10.5194/tc-12-2901-2018, 2018
Short summary
Impact of dust deposition on the albedo of Vatnajökull ice cap, Iceland
Monika Wittmann, Christine Dorothea Groot Zwaaftink, Louise Steffensen Schmidt, Sverrir Guðmundsson, Finnur Pálsson, Olafur Arnalds, Helgi Björnsson, Throstur Thorsteinsson, and Andreas Stohl
The Cryosphere, 11, 741–754, https://doi.org/10.5194/tc-11-741-2017,https://doi.org/10.5194/tc-11-741-2017, 2017
Short summary
Isotopic exchange on the diurnal scale between near-surface snow and lower atmospheric water vapor at Kohnen station, East Antarctica
François Ritter, Hans Christian Steen-Larsen, Martin Werner, Valérie Masson-Delmotte, Anais Orsi, Melanie Behrens, Gerit Birnbaum, Johannes Freitag, Camille Risi, and Sepp Kipfstuhl
The Cryosphere, 10, 1647–1663, https://doi.org/10.5194/tc-10-1647-2016,https://doi.org/10.5194/tc-10-1647-2016, 2016
Short summary
Numerical simulations and observations of the role of katabatic winds in the creation and maintenance of Scharffenbergbotnen blue ice area, Antarctica
T. Zwinger, T. Malm, M. Schäfer, R. Stenberg, and J. C. Moore
The Cryosphere, 9, 1415–1426, https://doi.org/10.5194/tc-9-1415-2015,https://doi.org/10.5194/tc-9-1415-2015, 2015
Short summary
Air temperature variability over three glaciers in the Ortles–Cevedale (Italian Alps): effects of glacier fragmentation, comparison of calculation methods, and impacts on mass balance modeling
L. Carturan, F. Cazorzi, F. De Blasi, and G. Dalla Fontana
The Cryosphere, 9, 1129–1146, https://doi.org/10.5194/tc-9-1129-2015,https://doi.org/10.5194/tc-9-1129-2015, 2015
Short summary
Blowing snow in coastal Adélie Land, Antarctica: three atmospheric-moisture issues
H. Barral, C. Genthon, A. Trouvilliez, C. Brun, and C. Amory
The Cryosphere, 8, 1905–1919, https://doi.org/10.5194/tc-8-1905-2014,https://doi.org/10.5194/tc-8-1905-2014, 2014
Brief Communication: Trends in sea ice extent north of Svalbard and its impact on cold air outbreaks as observed in spring 2013
A. Tetzlaff, C. Lüpkes, G. Birnbaum, J. Hartmann, T. Nygård, and T. Vihma
The Cryosphere, 8, 1757–1762, https://doi.org/10.5194/tc-8-1757-2014,https://doi.org/10.5194/tc-8-1757-2014, 2014
Brief communication: Light-absorbing impurities can reduce the density of melting snow
O. Meinander, A. Kontu, A. Virkkula, A. Arola, L. Backman, P. Dagsson-Waldhauserová, O. Järvinen, T. Manninen, J. Svensson, G. de Leeuw, and M. Leppäranta
The Cryosphere, 8, 991–995, https://doi.org/10.5194/tc-8-991-2014,https://doi.org/10.5194/tc-8-991-2014, 2014
Surface and snowdrift sublimation at Princess Elisabeth station, East Antarctica
W. Thiery, I. V. Gorodetskaya, R. Bintanja, N. P. M. Van Lipzig, M. R. Van den Broeke, C. H. Reijmer, and P. Kuipers Munneke
The Cryosphere, 6, 841–857, https://doi.org/10.5194/tc-6-841-2012,https://doi.org/10.5194/tc-6-841-2012, 2012
Sensitivity of a distributed temperature-radiation index melt model based on AWS observations and surface energy balance fluxes, Hurd Peninsula glaciers, Livingston Island, Antarctica
U. Y. Jonsell, F. J. Navarro, M. Bañón, J. J. Lapazaran, and J. Otero
The Cryosphere, 6, 539–552, https://doi.org/10.5194/tc-6-539-2012,https://doi.org/10.5194/tc-6-539-2012, 2012
Cited articles
Ageta, Y. and Fujita, K.: Characteristics of mass balance of summer-accumulation type glaciers in the Himalayas and Tibetan Plateau, Z. Gletscherk. Glazialgeol., 32, 61–65, 1996.
Anderson, B., Mackintosh, A., Stumm, D., George, L., Kerr, T., Winter-Billington, A., and Fitzsimmons, S.: Climate sensitivity of a high-precipitation glacier in New Zealand, J. Glaciol., 56, 114–128, 2010.
Bogan, T., Mohseni, O., and Stefan, H. G.: Stream temperature–equilibrium temperature relationship, Water Resour. Res., 39, 1245, https://doi.org/10.1029/2003WR002034, 2003.
Bolch, T., Yao, T., Kang, S., Buchroithner, M. F., Scherer, D., Maussion, F., Huintjes, E., and Schneider, C.: A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009, The Cryosphere, 4, 419–433, https://doi.org/10.5194/tc-4-419-2010, 2010.
Braithwaite, R. J.: Aerodynamic stability and turbulent sensible-heat flux over a melting ice surface, the Greenland ice sheet, J. Glaciol., 41, 562–571, 1995.
Brock, B. W., Willis, I. C., and Martin, M. J.: Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d'Arolla, Switzerland, J. Glaciol., 52, 281–297, 2006.
Caidong, C. and Sorteberg, A.: Modelled mass balance of Xibu glacier, Tibetan Plateau: sensitivity to climate change, J. Glaciol., 56, 235–248, 2010.
Chen, B., Xu, X. D., Yang, S., and Zhang, W.: On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau, Theoret. Appl. Climatol., 110, 423–435, https://doi.org/10.1007/s00704-012-0641y, 2012.
Cullen, N. J., Mölg, T., Kaser, G., Steffen, K., and Hardy, D. R.: Energy-balance model validation on the top of Kilimanjaro, Tanzania, using eddy covariance data, Ann. Glaciol., 46, 227–233, 2007.
Ding, Y.: The variability of the Asian Summer Monsoon, J. Meteorol. Soc. Jpn., 85B, 21–54, 2007.
Fujita, K. and Ageta, Y.: Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model, J. Glaciol., 46, 244–252, 2000.
Fujita, K. and Nuimura, T.: Spatially heterogeneous wastage of Himalayan glaciers, P. Natl. Acad. Sci. USA, 108, 14011–14014, 2011.
Gardner, A. S., Moholdt, G., Wouters, B., Wolken, G. J., Burgess, D. O., Sharp, M. J., Cogley, J. G., Braun, C., and Labine, C.: Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago, Nature, 473, 357–360, 2011.
Georges, C. and Kaser, G.: Ventilated and unventilated air temperature measurements for glacier-climate studies on a tropical high mountain site, J. Geophys. Res., 107, 4775, https://doi.org/10.1029/2002JD002503, 2002.
Greuell, W. and Smeets, P.: Variations with elevation in the surface energy balance on the Pasterze (Austria), J. Geophys. Res., 106, 31717–31727, 2001.
Gromke, C., Manes, C., Walter, B., Lehning, M., and Guala, M.: Aerodynamic roughness length of fresh snow, Bound.-Lay. Meteorol., 141, 21–34, 2011.
Haginoya, S., Fujii, H., Kuwagata, T., Xu, J., Ishigooka, Y., Kang, S., and Zhang, Y.: Air-lake interaction features found in heat and water exchanges over Nam Co on the Tibetan Plateau, SOLA, 5, 172–175, 2009.
He, Y., Zhang, Z., Theakstone, W. H., Chen, T., Yao, T., and Pang, H.: Changing features of the climate and glaciers in China's monsoonal temperate glacier region, J. Geophys. Res., 108, 4530, https://doi.org/10.1029/2002JD003365, 2003.
Hoffman, M. J., Fountain, A. G., and Liston, G. E.: Surface energy balance and melt thresholds over 11 years at Taylor Glacier, Antarctica, J. Geophys. Res., 113, F04014, https://doi.org/10.1029/2008JF001029, 2008.
Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., Hong, Y., Stocker, E. F., and Wolff, D. B.: The TRMM Multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale, J. Hydrometeorol., 8, 38–55, 2007.
Jiang, X., Wang, N. L., He, J. Q., Wu, X. B., and Song, G. J.: A distributed surface energy and mass balance model and its application to a mountain glacier in China, Chinese Sci. Bull., 55, 2079–2087, 2010.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437–471, 1996.
Kang, S., Chen, F., Gao, T., Zhang, Y., Yang, W., Yu, W., and Yao, T.: Early onset of rainy season suppresses glacier melt: a case study on Zhadang glacier, Tibetan Plateau, J. Glaciol., 55, 755–758, 2009.
Kaser, G.: Glacier-climate interaction at low latitudes, J. Glaciol., 47, 195–204, 2001.
Kaser, G., Cogley, J. G., Dyurgerov, M. B., Meier, M. F., and Ohmura, A.: Mass balance of glaciers and ice caps: consensus estimates for 1961–2004, Geophys. Res. Lett., 33, L19501, https://doi.org/10.1029/2006GL027511, 2006.
Klok, E. J. and Oerlemans, J.: Model study of the spatial distribution of the energy and mass balance of Morteratschgletscher, Switzerland, J. Glaciol., 48, 505–518, 2002.
Li, J.: The glaciers of Tibet, Science Press, Beijing, China, 1986.
Li, J., Wu, Z., Jiang, Z., and He, J.: Can global warming strengthen the East Asian Summer Monsoon?, J. Climate, 23, 6696–6705, 2010.
Liebmann, B. and Smith, C. A.: Description of a complete (interpolated) outgoing longwave radiation dataset, Bull. Am. Meteorol. Soc., 77, 1275–1277, 1996.
Maussion, F., Scherer, D., Finkelnburg, R., Richters, J., Yang, W., and Yao, T.: WRF simulation of a precipitation event over the Tibetan Plateau, China – an assessment using remote sensing and ground observations, Hydrol. Earth Syst. Sci., 15, 1795–1817, https://doi.org/10.5194/hess-15-1795-2011, 2011.
Michel, D., Philipona, R., Ruckstuhl, C., Vogt, R., and Vuilleumier, L.: Performance and uncertainty of CNR1 Net Radiometers during a one-year field comparison, J. Atmos. Ocean. Technol., 25, 442–451, 2008.
Mölg, T. and Kaser, G.: A new approach to resolving climate-cryosphere relations: downscaling climate dynamics to glacier-scale mass and energy balance without statistical scale linking, J. Geophys. Res., 116, D16101, https://doi.org/10.1029/2011JD015669, 2011.
Mölg, T. and Scherer, D.: Retrieving important mass-balance model parameters from AWS measurements and high-resolution mesoscale atmospheric modeling, J. Glaciol., 58, 625–628, 2012.
Mölg, T., Cullen, N. J., Hardy, D. R., Kaser, G., and Klok, E. J.: Mass balance of a slope glacier on Kilimanjaro and its sensitivity to climate, Int. J. Climatol., 28, 881–892, 2008.
Mölg, T., Cullen, N. J., Hardy, D. R., Winkler, M., and Kaser, G.: Quantifying climate change in the tropical midtroposphere over East Africa from glacier shrinkage on Kilimanjaro, J. Climate, 22, 4162–4181, 2009a.
Mölg, T., Cullen, N. J., and Kaser, G.: Solar radiation, cloudiness and longwave radiation over low-latitude glaciers: implications for mass balance modeling, J. Glaciol., 55, 292–302, 2009b.
Oerlemans, J. and Knap, W. H.: A 1 year record of global radiation and albedo in the ablation zone of Morteratschgletscher, Switzerland, J. Glaciol., 44, 231–238, 1998.
Park, H. S., Chiang, J. C. H., Lintner, B., and Zhang, G. J.: The delayed effect of major El Nino events on Indian Monsoon Rainfall, J. Climate, 23, 932–946, 2010.
Petersen, L. and Pellicciotti, F.: Spatial and temporal variability of air temperature on a melting glacier: atmospheric controls, extrapolation methods and their effect on melt modeling, Juncal Norte Glacier, Chile, J. Geophys. Res., 116, D23109, https://doi.org/10.1029/2011JD015842, 2011.
Rabus, B., Eineder, M., Roth, A., and Bamler, R.: The shuttle radar topography mission – a new class of digital elevation models acquired by spaceborne radar, J. Photogramm. Remote Sens., 57, 241–262, 2003.
Rupper, S. and Roe, G.: Glacier changes and regional climate: A mass and energy balance approach, J. Climate, 21, 5384–5401, 2008.
Sicart, J. E., Ribstein, P., Chazarin, J. P., and Berthier, E.: Solid precipitation on a tropical glacier in Bolivia measured with an ultrasonic depth gauge, Water Res. Res., 38, 1189, https://doi.org/10.1029/2002WR001402, 2002.
Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, J. Comput. Phys., 227, 3465–3485, 2008.
Sturm, M. and Holmgren, J.: Differences in compaction behavior of three climate classes of snow, Ann. Glaciol., 26, 125–130, 1998.
Tao, F., Yokozawa, M., Zhang, Z., Hayashi, Y., Grassl, H., and Fu, C.: Variability in climatology and agricultural production in China in association with the East Asian summer monsoon and El Niño Southern Oscillation, Clim. Res., 28, 23–30, 2004.
Tatang, M. A., Pan, W., Prinn, R. G., and McRae, G. J.: An efficient method for parametric uncertainty analysis of numerical geophysical models, J. Geophys. Res., 102, 21925–21932, 1997.
Ueno, K.: Synoptic conditions causing nonmonsoon snowfalls in the Tibetan Plateau, Geophys. Res. Lett., 32, L01811, https://doi.org/10.1029/2004GL021421, 2005.
Ueno, K., Fujii, H., Yamada, H., and Liu, L.: Weak and frequent monsoon precipitation over the Tibetan Plateau, J. Meteorol. Soc. Jpn., 79, 419–434, 2001.
Van As, D., van den Broeke, M. R., Reijmer, C., and van de Wal, R.: The summer surface energy balance of the high Antarctic plateau, Bound.-Lay. Meteorol., 115, 289–317, 2005.
van Pelt, W. J. J., Oerlemans, J., Reijmer, C. H., Pohjola, V. A., Pettersson, R., and van Angelen, J. H.: Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model, The Cryosphere, 6, 641–659, https://doi.org/10.5194/tc-6-641-2012, 2012.
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012.
Wang, B. and Fan, Z.: Choice of South Asian summer monsoon indices, Bull. Am. Meteorol. Soc., 80, 629–638, 1999.
Webster, P. J., Magaña, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M., and Yasunari, T.: Monsoons: processes, predictability, and the prospects for prediction, J. Geophys. Res., 103, 14451–14510, 1998.
Xie, Y.: Autumn heat balance in the ablation area of Hailuogou Glacier, in: Glaciers and Environment on the Tibet Plateau (1), the Gongga Mountain, edited by: Xie, Z. and Kotlyakov, V. M., Science Press, Beijing, China, 1994.
Yang, W., Guo, X., Yao, T., Yang, K., Zhao, L., Li, S., and Zhu, M.: Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier, J. Geophys. Res., 116, D14116, https://doi.org/10.1029/2010JD015183, 2011.
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., Xu, B., Pu, J., Lu, A., Xiang, Y., Kattel, D. B., and Joswiak, D.: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings, Nature Clim. Change, 2, 663–667, 2012.
Zhou, S., Kang, S., Gao, T., and Zhang, G.: Response of Zhadang Glacier runoff in Nam Co Basin, Tibet, to changes in air temperature and precipitation form, Chinese Sci. Bull., 55, 2103–2110, 2010.