Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 6, issue 4
The Cryosphere, 6, 743-762, 2012
https://doi.org/10.5194/tc-6-743-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 6, 743-762, 2012
https://doi.org/10.5194/tc-6-743-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Jul 2012

Research article | 11 Jul 2012

Refreezing on the Greenland ice sheet: a comparison of parameterizations

C. H. Reijmer1, M. R. van den Broeke1, X. Fettweis*, J. Ettema2,1, and L. B. Stap1 C. H. Reijmer et al.
  • 1Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, The Netherlands
  • 2Département de Géographie, Université de Liège, Liège, Belgium
  • *now at: Faculty of Geo-Information and Earth Observations, University of Twente, Enschede, The Netherlands

Abstract. Retention and refreezing of meltwater are acknowledged to be important processes for the mass budget of polar glaciers and ice sheets. Several parameterizations of these processes exist for use in energy and mass balance models. Due to a lack of direct observations, validation of these parameterizations is difficult. In this study we compare a set of 6 refreezing parameterizations against output of two Regional Climate Models (RCMs) coupled to an energy balance snow model, the Regional Atmospheric Climate Model (RACMO2) and the Modèle Atmosphérique Régional (MAR), applied to the Greenland ice sheet. In both RCMs, refreezing is explicitly calculated in a snow model that calculates vertical profiles of temperature, density and liquid water content. Between RACMO2 and MAR, the ice sheet-integrated amount of refreezing differs by only 4.9 mm w.e yr−1 (4.5 %), and the temporal and spatial variability are very similar. For consistency, the parameterizations are forced with output (surface temperature, precipitation and melt) of the RCMs. For the ice sheet-integrated amount of refreezing and its inter-annual variations, all parameterizations give similar results, especially after some tuning. However, the spatial distributions differ significantly and the spatial correspondence between the RCMs is better than with any of the parameterizations. Results are especially sensitive to the choice of the depth of the thermally active layer, which determines the cold content of the snow in most parameterizations. These results are independent of which RCM is used to force the parameterizations.

Publications Copernicus
Download
Citation
Share