Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 7, issue 4
The Cryosphere, 7, 1247–1262, 2013
https://doi.org/10.5194/tc-7-1247-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 7, 1247–1262, 2013
https://doi.org/10.5194/tc-7-1247-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 08 Aug 2013

Research article | 08 Aug 2013

Hoar crystal development and disappearance at Dome C, Antarctica: observation by near-infrared photography and passive microwave satellite

N. Champollion et al.

Related authors

Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau
Mathieu Casado, Amaelle Landais, Valérie Masson-Delmotte, Christophe Genthon, Erik Kerstel, Samir Kassi, Laurent Arnaud, Ghislain Picard, Frederic Prie, Olivier Cattani, Hans-Christian Steen-Larsen, Etienne Vignon, and Peter Cermak
Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016,https://doi.org/10.5194/acp-16-8521-2016, 2016
Short summary
Summertime evolution of snow specific surface area close to the surface on the Antarctic Plateau
Q. Libois, G. Picard, L. Arnaud, M. Dumont, M. Lafaysse, S. Morin, and E. Lefebvre
The Cryosphere, 9, 2383–2398, https://doi.org/10.5194/tc-9-2383-2015,https://doi.org/10.5194/tc-9-2383-2015, 2015
Short summary
Using MODIS land surface temperatures and the Crocus snow model to understand the warm bias of ERA-Interim reanalyses at the surface in Antarctica
H. Fréville, E. Brun, G. Picard, N. Tatarinova, L. Arnaud, C. Lanconelli, C. Reijmer, and M. van den Broeke
The Cryosphere, 8, 1361–1373, https://doi.org/10.5194/tc-8-1361-2014,https://doi.org/10.5194/tc-8-1361-2014, 2014
Implementation and evaluation of prognostic representations of the optical diameter of snow in the SURFEX/ISBA-Crocus detailed snowpack model
C. M. Carmagnola, S. Morin, M. Lafaysse, F. Domine, B. Lesaffre, Y. Lejeune, G. Picard, and L. Arnaud
The Cryosphere, 8, 417–437, https://doi.org/10.5194/tc-8-417-2014,https://doi.org/10.5194/tc-8-417-2014, 2014
Simulation of the microwave emission of multi-layered snowpacks using the Dense Media Radiative transfer theory: the DMRT-ML model
G. Picard, L. Brucker, A. Roy, F. Dupont, M. Fily, A. Royer, and C. Harlow
Geosci. Model Dev., 6, 1061–1078, https://doi.org/10.5194/gmd-6-1061-2013,https://doi.org/10.5194/gmd-6-1061-2013, 2013

Related subject area

Antarctic
Solar radiative transfer in Antarctic blue ice: spectral considerations, subsurface enhancement, inclusions, and meteorites
Andrew R. D. Smedley, Geoffrey W. Evatt, Amy Mallinson, and Eleanor Harvey
The Cryosphere, 14, 789–809, https://doi.org/10.5194/tc-14-789-2020,https://doi.org/10.5194/tc-14-789-2020, 2020
Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 1: Boundary conditions and climatic forcing
Torsten Albrecht, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 14, 599–632, https://doi.org/10.5194/tc-14-599-2020,https://doi.org/10.5194/tc-14-599-2020, 2020
Short summary
Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 2: Parameter ensemble analysis
Torsten Albrecht, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 14, 633–656, https://doi.org/10.5194/tc-14-633-2020,https://doi.org/10.5194/tc-14-633-2020, 2020
Short summary
Pan-Antarctic map of near-surface permafrost temperatures at 1 km2 scale
Jaroslav Obu, Sebastian Westermann, Gonçalo Vieira, Andrey Abramov, Megan Ruby Balks, Annett Bartsch, Filip Hrbáček, Andreas Kääb, and Miguel Ramos
The Cryosphere, 14, 497–519, https://doi.org/10.5194/tc-14-497-2020,https://doi.org/10.5194/tc-14-497-2020, 2020
Short summary
Influence of sea-ice anomalies on Antarctic precipitation using source attribution in the Community Earth System Model
Hailong Wang, Jeremy G. Fyke, Jan T. M. Lenaerts, Jesse M. Nusbaumer, Hansi Singh, David Noone, Philip J. Rasch, and Rudong Zhang
The Cryosphere, 14, 429–444, https://doi.org/10.5194/tc-14-429-2020,https://doi.org/10.5194/tc-14-429-2020, 2020
Short summary

Cited articles

Arthern, R. J., Winnebrenner, D. P., and Vaughan, D. G.: Antarctic snow accumulation mapped using polarization of 4.3 cm wavelength microwave emission, J. Geophys. Res., 111, https://doi.org/10.1029/2004JD005667, 2006.
Bellot, H., Trouvilliez, A., Naaim-Bouvet, F., Genthon, C., and Gallée, H.: Present weather-sensor tests for measuring drifting snow, Ann. Glaciol., 52, 176–184, https://doi.org/10.3189/172756411797252356, 2011.
Born, M. and Wolf, E.: Principles of Optics Electromagnetic, Theory of Propagation, Interference and Diffraction of Light, Cambridge University Press, Cambridge, 1999.
Bromwich, D. H.: Snowfall in High Southern Latitudes, Rev. Geophys., 26, 149–168, 1988.
Brucker, L., Picard, G., Arnaud, L., Barnola, J.-M., Schneebeli, M., Brunjail, H., Lefebvre, E., and Fily, M.: M}odeling time series of microwave brightness temperature at Dome C, {Antarctica, using vertically resolved snow temperature and microstructure measurements, J. Glaciol., 57, 171–182, https://doi.org/10.3189/002214311795306736, 2011.
Publications Copernicus
Download
Citation