Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 7, issue 4
The Cryosphere, 7, 1263-1286, 2013
https://doi.org/10.5194/tc-7-1263-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 7, 1263-1286, 2013
https://doi.org/10.5194/tc-7-1263-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 09 Aug 2013

Research article | 09 Aug 2013

Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011

J. Gardelle1, E. Berthier2, Y. Arnaud3, and A. Kääb4 J. Gardelle et al.
  • 1CNRS – Université Grenoble 1, Laboratoire de Glaciologie et de Géophysique de l'Environnement (LGGE), UMR5183, 54 rue Molière, BP 96, 38402 Saint Martin d'Hères Cedex, France
  • 2CNRS, Université de Toulouse, LEGOS, 14 av. Edouard Belin, Toulouse 31400, France
  • 3IRD – Université Grenoble 1, LTHE/LGGE, 54 rue Molière, BP 96, 38402 Saint Martin d'Hères Cedex, France
  • 4Department of Geosciences, University of Oslo, P.O. Box 1047 Blindern, 0316 Oslo, Norway

Abstract. The recent evolution of Pamir-Karakoram-Himalaya (PKH) glaciers, widely acknowledged as valuable high-altitude as well as mid-latitude climatic indicators, remains poorly known. To estimate the region-wide glacier mass balance for 9 study sites spread from the Pamir to the Hengduan Shan (eastern Himalaya), we compared the 2000 Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) to recent (2008–2011) DEMs derived from SPOT5 stereo imagery. During the last decade, the region-wide glacier mass balances were contrasted with moderate mass losses in the eastern and central Himalaya (−0.22 ± 0.12 m w.e. yr−1 to −0.33 ± 0.14 m w.e. yr−1) and larger losses in the western Himalaya (−0.45 ± 0.13 m w.e. yr−1). Recently reported slight mass gain or balanced mass budget of glaciers in the central Karakoram is confirmed for a larger area (+0.10 ± 0.16 m w.e. yr−1) and also observed for glaciers in the western Pamir (+0.14 ± 0.13 m w.e. yr−1). Thus, the "Karakoram anomaly" should be renamed the "Pamir-Karakoram anomaly", at least for the last decade. The overall mass balance of PKH glaciers, −0.14 ± 0.08 m w.e. yr−1, is two to three times less negative than the global average for glaciers distinct from the Greenland and Antarctic ice sheets. Together with recent studies using ICESat and GRACE data, DEM differencing confirms a contrasted pattern of glacier mass change in the PKH during the first decade of the 21st century.

Please read the corrigendum first before accessing the article.
Publications Copernicus
Download
Notice on corrigendum

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Citation
Share