Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 7, issue 5
The Cryosphere, 7, 1603-1621, 2013
https://doi.org/10.5194/tc-7-1603-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Interactions between climate change and the Cryosphere: SVALI,...

The Cryosphere, 7, 1603-1621, 2013
https://doi.org/10.5194/tc-7-1603-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 18 Oct 2013

Research article | 18 Oct 2013

Decadal changes from a multi-temporal glacier inventory of Svalbard

C. Nuth1, J. Kohler2, M. König2, A. von Deschwanden2, J. O. Hagen1, A. Kääb1, G. Moholdt1,3, and R. Pettersson4 C. Nuth et al.
  • 1Dept. of Geosciences, University of Oslo, Oslo Norway
  • 2Norwegian Polar Institute, Troms\o, Norway
  • 3Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, La Jolla, California, USA
  • 4Department of Earth Sciences, Uppsala University, Uppsala, Sweden

Abstract. We present a multi-temporal digital inventory of Svalbard glaciers with the most recent from the late 2000s containing 33 775 km2 of glaciers covering 57% of the total land area of the archipelago. At present, 68% of the glacierized area of Svalbard drains through tidewater glaciers that have a total terminus width of ~ 740 km. The glacierized area over the entire archipelago has decreased by an average of 80 km2 a−1 over the past ~ 30 yr, representing a reduction of 7%. For a sample of ~ 400 glaciers (10 000 km2) in the south and west of Spitsbergen, three digital inventories are available from the 1930/60s, 1990 and 2007 from which we calculate average changes during 2 epochs. In the more recent epoch, the terminus retreat was larger than in the earlier epoch, while area shrinkage was smaller. The contrasting pattern may be explained by the decreased lateral wastage of the glacier tongues. Retreat rates for individual glaciers show a mix of accelerating and decelerating trends, reflecting the large spatial variability of glacier types and climatic/dynamic response times in Svalbard. Lastly, retreat rates estimated by dividing glacier area changes by the tongue width are larger than centerline retreat due to a more encompassing frontal change estimate with inclusion of lateral area loss.

Publications Copernicus
Special issue
Download
Citation
Share