Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 7, issue 6
The Cryosphere, 7, 1901–1914, 2013
https://doi.org/10.5194/tc-7-1901-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Earth observation of the Cryosphere

The Cryosphere, 7, 1901–1914, 2013
https://doi.org/10.5194/tc-7-1901-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 17 Dec 2013

Research article | 17 Dec 2013

Constraining GRACE-derived cryosphere-attributed signal to irregularly shaped ice-covered areas

W. Colgan1,2, S. Luthcke3, W. Abdalati1, and M. Citterio2 W. Colgan et al.
  • 1Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
  • 2Geological Survey of Denmark and Greenland, Copenhagen, Denmark
  • 3Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, MD, USA

Abstract. We use a Monte Carlo approach to invert a spherical harmonic representation of cryosphere-attributed mass change in order to infer the most likely underlying mass changes within irregularly shaped ice-covered areas at nominal 26 km resolution. By inverting a spherical harmonic representation through the incorporation of additional fractional ice coverage information, this approach seeks to eliminate signal leakage between non-ice-covered and ice-covered areas. The spherical harmonic representation suggests a Greenland mass loss of 251 ± 25 Gt a−1 over the December 2003 to December 2010 period. The inversion suggests 218 ± 20 Gt a−1 was due to the ice sheet proper, and 34 ± 5 Gt a−1 (or ~14%) was due to Greenland peripheral glaciers and ice caps (GrPGICs). This mass loss from GrPGICs exceeds that inferred from all ice masses on both Ellesmere and Devon islands combined. This partition therefore highlights that GRACE-derived "Greenland" mass loss cannot be taken as synonymous with "Greenland ice sheet" mass loss when making comparisons with estimates of ice sheet mass balance derived from techniques that sample only the ice sheet proper.

Publications Copernicus
Download
Citation