Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
The Cryosphere, 7, 333-347, 2013
https://doi.org/10.5194/tc-7-333-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
27 Feb 2013
Event-driven deposition of snow on the Antarctic Plateau: analyzing field measurements with SNOWPACK
C. D. Groot Zwaaftink1,4, A. Cagnati2, A. Crepaz2, C. Fierz1, G. Macelloni3, M. Valt2, and M. Lehning1,4 1WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
2ARPAV CVA, Arabba di Livinallongo, Italy
3Institute of Applied Physics – IFAC-CNR, Florence, Italy
4CRYOS, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
Abstract. Antarctic surface snow has been studied by means of continuous measurements and observations over a period of 3 yr at Dome C. Snow observations include solid deposits in form of precipitation, diamond dust, or hoar, snow temperatures at several depths, records of deposition and erosion on the surface, and snow profiles. Together with meteorological data from automatic weather stations, this forms a unique dataset of snow conditions on the Antarctic Plateau. Large differences in snow amounts and density exist between solid deposits measured 1 m above the surface and deposition at the surface. We used the snow-cover model SNOWPACK to simulate the snow-cover evolution for different deposition parameterizations. The main adaptation of the model described here is a new event-driven deposition scheme. The scheme assumes that snow is added to the snow cover permanently only during periods of strong winds. This assumption followed from the comparison between observations of solid deposits and daily records of changes in snow height: solid deposits could be observed on tables 1 m above the surface on 94 out of 235 days (40%) while deposition at the surface occurred on 59 days (25%) during the same period, but both happened concurrently on 33 days (14%) only. This confirms that precipitation is not necessarily the driving force behind non-temporary snow height changes. A comparison of simulated snow height to stake farm measurements over 3 yr showed that we underestimate the total accumulation by at least 33%, when the total snow deposition is constrained by the measurements of solid deposits on tables 1 m above the surface. During shorter time periods, however, we may miss over 50% of the deposited mass. This suggests that the solid deposits measured above the surface and used to drive the model, even though comparable to ECMWF forecasts in its total magnitude, should be seen as a lower boundary. As a result of the new deposition mechanism, we found a good agreement between model results and measurements of snow temperatures and recorded snow profiles. In spite of the underestimated deposition, the results thus suggest that we can obtain quite realistic simulations of the Antarctic snow cover by the introduction of event-driven snow deposition.

Citation: Groot Zwaaftink, C. D., Cagnati, A., Crepaz, A., Fierz, C., Macelloni, G., Valt, M., and Lehning, M.: Event-driven deposition of snow on the Antarctic Plateau: analyzing field measurements with SNOWPACK, The Cryosphere, 7, 333-347, https://doi.org/10.5194/tc-7-333-2013, 2013.
Publications Copernicus
Download
Share