Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 7, issue 1
The Cryosphere, 7, 375-393, 2013
https://doi.org/10.5194/tc-7-375-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 7, 375-393, 2013
https://doi.org/10.5194/tc-7-375-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Feb 2013

Research article | 28 Feb 2013

Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

P. Fretwell*,1, H. D. Pritchard*,1, D. G. Vaughan1, J. L. Bamber2, N. E. Barrand1, R. Bell3, C. Bianchi4, R. G. Bingham5, D. D. Blankenship6, G. Casassa7, G. Catania6, D. Callens8, H. Conway9, A. J. Cook10, H. F. J. Corr1, D. Damaske11, V. Damm11, F. Ferraccioli1, R. Forsberg12, S. Fujita13, Y. Gim14, P. Gogineni15, J. A. Griggs2, R. C. A. Hindmarsh1, P. Holmlund16, J. W. Holt6, R. W. Jacobel17, A. Jenkins1, W. Jokat18, T. Jordan1, E. C. King1, J. Kohler19, W. Krabill20, M. Riger-Kusk21, K. A. Langley22, G. Leitchenkov23, C. Leuschen15, B. P. Luyendyk24, K. Matsuoka25, J. Mouginot26, F. O. Nitsche3, Y. Nogi27, O. A. Nost25, S. V. Popov28, E. Rignot29, D. M. Rippin30, A. Rivera7, J. Roberts31, N. Ross32, M. J. Siegert2, A. M. Smith1, D. Steinhage18, M. Studinger33, B. Sun34, B. K. Tinto3, B. C. Welch18, D. Wilson35, D. A. Young6, C. Xiangbin34, and A. Zirizzotti4 P. Fretwell et al.
  • 1British Antarctic Survey, Cambridge, UK
  • 2School of Geographical Sciences, University of Bristol, UK
  • 3Lamont-Doherty Earth Observatory of Columbia University, Palisades, USA
  • 4Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
  • 5School of Geosciences, University of Aberdeen, UK
  • 6Institute for Geophysics, University of Texas at Austin, USA
  • 7Centro de Estudios Cientificos, Santiago, Chile
  • 8Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium
  • 9Earth and Space Sciences, University of Washington, Seattle, USA
  • 10Department of Geography, Swansea University, Swansea, UK
  • 11Federal Institute for Geosciences and Natural Resources, Hannover, Germany
  • 12National Space Institute, Technical University of Denmark, Denmark
  • 13National Institute of Polar Research, Tokyo, Japan
  • 14Jet Propulsion Laboratory. California Institute of Technology, Pasadena, USA
  • 15Electrical Engineering & Computer Science, University of Kansas, Lawrence, USA
  • 16Stockholm University, Stockholm, Sweden
  • 17St. Olaf College, Northfield, MN 55057, USA
  • 18Alfred Wegener Institute, Bremerhaven, Germany
  • 19Norwegian Polar Institute, Fram Centre, Tromsø, Norway
  • 20NASA Wallops Flight Facility, Virginia, USA
  • 21College of Science, University of Canterbury, Christchurch, New Zealand
  • 22Department of Geosciences, University of Oslo, Norway
  • 23Institute for Geology and Mineral Resources of the World Ocean, St.-Petersburg, Russia
  • 24Earth Research Institute, University of California in Santa Barbara, USA
  • 25Norwegian Polar Institute, Tromso, Norway
  • 26Department of Earth System Science, University of California, Irvine, USA
  • 27National Institute of Polar Research, Tokyo, Japan
  • 28Polar Marine Geosurvey Expedition, St.-Petersburg, Russia
  • 29School of Physical Sciences, University of California, Irvine, USA
  • 30Environment Department, University of York, Heslington, York, YO10 5DD, UK
  • 31Department of Sustainability, Environment, Water, Population and Communities, Australian Antarctic Division, Hobart, Tasmania, Australia
  • 32School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
  • 33NASA Goddard Space Flight Center, Greenbelt, USA
  • 34Polar Research Institute of China, Shanghai, China
  • 35Instituite for Crustal Studies, University of California in Santa Barbara, USA
  • *These authors contributed equally to this work.

Abstract. We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60° S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved data-coverage has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6% greater, the mean depth of the bed beneath the grounded ice sheet is 72 m lower and the area of ice sheet grounded on bed below sea level is increased by 10%. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets.

Publications Copernicus
Download
Citation
Share