Brief communication

“Global glacier volumes and sea level – small but systematic effects of ice below the surface of the ocean and of new local lakes on land”

W. Haeberli and A. Linsbauer

Geography Department, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

Correspondence to: W. Haeberli (wilfried.haeberli@geo.uzh.ch)

Received: 8 November 2012 – Published in The Cryosphere Discuss.: 13 December 2012
Revised: 15 April 2013 – Accepted: 16 April 2013 – Published: 8 May 2013

Abstract. The potential contribution of glaciers and ice caps to sea level rise is usually calculated by comparing the estimated total ice volume with the surface area of the ocean. Part of this total ice volume, however, does not contribute to sea level rise because it is below the surface of the ocean or below the levels of future lakes on land. The present communication points to this so far overlooked phenomenon and provides a first order-of-magnitude estimate. It is shown that the effect is small (most likely about 1 to 6 cm sea level equivalent) but systematic, could primarily affect earlier stages of global glacier vanishing, and should therefore be adequately considered. Now-available techniques of slope-related high-resolution glacier bed modelling have the potential to provide more detailed assessments in the future.

1 Introduction

The total possible contribution to sea level rise from melting glaciers and ice caps other than the two continental ice sheets of Antarctica and Greenland is commonly calculated by estimating the total volume \(V_{\text{gic}} \) of such land–ice bodies, dividing the corresponding value by the value of the ocean area (assumed to be constant for comparability), and applying a correction for the ice–water density difference. Parts of the ice in glaciers and ice caps, however, are located below sea level or below the levels of lakes potentially forming in overdeepened parts of their beds on land. The vanishing of such ice does not contribute to sea level rise but will even slightly lower it due to the ice–water density difference. As a consequence, not the total volume of glaciers and ice caps, but this volume minus the corresponding volume below sea level \(V_{\text{gic}} \) and the volume below levels of potential lakes on land \(V_I \) constitutes the real volume \(V_r \) which affects sea level:

\[
V_r = V_{\text{gic}} - V_s - V_l.
\]

This effect has so far received little attention (Loriaux and Casassa, 2013) or may even have been completely overlooked (for instance, in the IPCC assessment reports). We here try to make a first order-of-magnitude estimate of the necessary correction. Techniques of slope- and flux-dependent high-resolution glacier bed modelling now open the way for more detailed assessments in the future.

2 Thickness estimates for glaciers and ice caps

Only very few glaciers and ice caps in the world have measured ice thicknesses, from which volumes can be calculated. Various approaches have therefore been applied to estimate thicknesses and volumes of unmeasured perennial surface-ice bodies. The use of three-dimensional topographic information from detailed glacier inventories and digital elevation models (DEM) has now opened new dimensions for distributed modelling of ice thicknesses and volumes for large samples of glaciers and ice caps. The principle of an inverted flow law for ice (shear stresses as a function of strain rates governed by mass turnover) in combination with altitude information (elevation range) from tabular data in detailed glacier inventories was first applied in the 1990s (Haeberli and Hoelzle, 1995). It enabled slope-dependent estimates of
average/maximum thicknesses and volume calculations concerning all glaciers of entire mountain ranges (cf. Paul and Svoboda, 2010). Globally available DEMs of sufficient spatial resolution and quality then paved the way for computing approximate slope-dependent thickness patterns and high-resolution bed topographies of individual glaciers (Farinotti et al., 2009; Li et al., 2012; McNabb et al., 2012), of all glaciers at regional scales (Linsbauer et al., 2012; Clarke et al., 2012), and – most recently and at somewhat lower spatial resolution – even for all glacier complexes around the world (Huss and Farinotti, 2012). Absolute values of ice depth for unmeasured glaciers thereby depend on highly uncertain assumptions about surface mass fluxes (especially accumulation, albedo/radiation, etc.; Machguth et al., 2008) and flow characteristics (especially basal sliding, rate factor in Glen’s flow law). Calculated ice thicknesses can therefore deviate as much as ±30% or even more from measured and interpolated local values. In contrast, relative differences, i.e. the spatial patterns of the modelled ice thickness variability and corresponding bed topographies, are primarily related via basal shear stresses to surface slope as contained in DEMs and, hence, are rather robust (Linsbauer et al., 2012). This helps in assessing the amount of ice existing below sea level and below levels of lakes that might potentially form in overdeepened parts of glacier beds.

3 Ice below sea level and below levels of potential lakes

Glacially sculpted landscapes are characterised by striking sequences of sills and overdeepened basins with inverse slopes (Cook and Swift, 2012). The bed topographies produced by the above-mentioned model approximations at various levels of sophistication consistently exhibit exactly this type of pattern (Figs. 2 and 3; Linsbauer et al., 2012; cf. Figs. 3 and 4 in Huss and Farinotti, 2012). The overdeepened parts of the terrain are sites of potential lake formation when exposed by vanishing glaciers (Figs. 1 and 2; Frey et al., 2010). With continued, if not accelerated, global warming during the coming decades, the presently still existing glacier landscapes of mountain regions will indeed successively be replaced by landscapes with numerous lakes. As a regrowth of (at least large) glaciers during the coming centuries is unlikely with further rising long-term temperatures, these new lake landscapes will most probably persist for many future generations. They have important implications for densely populated mountain regions because they relate to risks (e.g. flood hazards; cf. Frey et al., 2010; Haeberli et al., 2010; Künzler et al., 2010) and opportunities (e.g. hydropower production; cf. Terrier et al., 2011), but also have a (very) small effect on sea level: if replaced by lake water when vanishing, the ice presently flowing through overdeepened parts of glacier beds does not immediately or directly contribute to sea level rise.

The long profile of Taku Glacier provided in Fig. 3 of Huss and Farinotti (2012) illustrates that even land-terminating glaciers can have bed parts well below sea level (Fig. 3). Large tide-water glaciers, which will continue influencing sea level for the near future in an important way (Meier et al., 2007), can occupy fjords many hundreds of meters deep (McNabb et al., 2012). Replacing the corresponding amounts of grounded ice below sea level by seawater again does not contribute to sea level rise. The density difference between ice and water even causes a lowering of sea level corresponding to about 10% of the ice volume below sea level (cf. Meier et al., 2007).

4 Effects for estimates of potential contributions from glaciers and ice caps to sea level rise

The necessary corrections to be applied to the total volume of glaciers and ice caps concerning their potential contribution to sea level rise relate to ice below sea level \((V_s)\) and ice below levels of potential lakes on land \((V_l)\). Exact numbers are difficult to obtain for a number of reasons, but the following rough order-of-magnitude estimate already indicates that \(V_s < V_l\).

Linsbauer et al. (2012) present a detailed analysis of overdeepened bed parts and potential new lakes in the Swiss Alps (cf. Fig. 2). Many of the new lakes will be small and shallow, but lakes of considerable size and volume may form where large and flat glaciers disappear. The total potential lake volume in the Swiss Alps is estimated at 2 to 3 km³ with an ice volume of 75 ± 22 km³ for the time horizon (1973) of
the model calculation and with a presently (2012) remaining ice volume of some $55 \pm 10 \text{ km}^3$. The corresponding percentage of potential future lake volume is thus about $5 \pm 3\%$ of the assumed ice volume. The primary questions related to such estimates are (a) whether the calculated volume of the modelled overdeepenings corresponds to the future volume of water stored in them and (b) how representative such values from one high-mountain chain may be with respect to glaciers and ice caps worldwide. Because of possible incisions at the down-valley side of new lakes, not all of the modelled overdeepenings may fill completely with water. Some lakes may irreversibly empty through moraine breaching and some of the lake volume may be replaced by sediment infill. Other lake volumes may newly form or become enhanced artificially for hydropower production (Terrier et al., 2011) or naturally by landslide damming. Models for ice thickness estimation tend to strongly underestimate the depth of marked overdeepenings, for instance at Konkordiaplatz of Aletsch Glacier or in the upper part of Rhone Glacier (Farinotti et al., 2009; Linsbauer et al., 2012). Moreover, the larger and flatter glaciers are, the larger and deeper potential new lakes tend to be. Most of the glaciers in the European Alps are comparably steep (Paul et al., 2011) and thus thin (Haeberli and Hoelzle, 1995) with a limited potential for large lakes. Overdeepened bed parts could be much larger in regions with networks of flat valley glaciers such as, e.g. central Alaska, the Canadian Rockies, parts of the Himalayas or the Patagonian ice fields (cf. Loriaux and Casassa, 2013, who estimate 10\% or even more for the Northern Patagonian Ice Field). Additional losses of water may be caused by increased evaporation over new lake (and sea) surfaces as compared to earlier ice surfaces at the same sites. Like seepage, agricultural and industrial use, etc., such effects involve complex process chains and interactions within the water cycle, the consideration of which is beyond the scope of the present brief communication on ice volumes. In view of all these uncertainties, the percentage value from the Swiss Alps can only be used for worldwide estimates as a very rough first approximation.

Ice below sea level of tidewater glaciers could constitute a far higher percentage of ice not contributing to sea level rise. In order to provide a rough order-of-magnitude estimate, we assume the following:

- About 50\% of the sea level contribution is from a number of large glaciers like Bering (Alaska) or O’Higgins (Patagonia) terminating in the sea or near sea level; rounded estimates of corresponding relative sea level contributions from Table 2 in Huss and Farinotti, 2012, and from Rastner et al. (2012) (for Greenland’s periphery) are Alaska 5\%, Antarctic and Subantarctic 10\%, Arctic Canada 10\%, Greenland periphery 10\%, Russian Arctic 5\%, Svalbard 5\%, and Patagonia 5\%.
5 Conclusions

The volume of glacier ice below the surface of the ocean and of potential future lakes (including related ice–water density effects) must be subtracted from the total volume of glaciers and ice caps for calculating sea level equivalents. A first rough order-of-magnitude estimate using information from recent slope-dependent ice thickness/volume calculations shows that the effect is small – probably a few centimetres sea level equivalent in total – but nevertheless systematic and should be correctly taken into account.

Acknowledgements. Thanks are due to Tobias Bolch, Holger Frey, Christian Huggel, Frank Paul, Philipp Rastner and Michael Zemp at the Geography Department of the University of Zurich, Switzerland, as well as Valentina Radić (TCD editor) for constructive feedback. Surendra Adhikari and an anonymous reviewer provided additional comments and suggestions, which helped to improve the quality of our contribution.

Edited by: V. Radic

References

W. Haeberli and A. Linsbauer: Global glacier volumes and sea level 821

