Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 8, issue 5
The Cryosphere, 8, 1885–1903, 2014
https://doi.org/10.5194/tc-8-1885-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Interactions between climate change and the Cryosphere: SVALI,...

The Cryosphere, 8, 1885–1903, 2014
https://doi.org/10.5194/tc-8-1885-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 20 Oct 2014

Research article | 20 Oct 2014

Glacier area and length changes in Norway from repeat inventories

S. H. Winsvold1,2, L. M. Andreassen2, and C. Kienholz3 S. H. Winsvold et al.
  • 1Department of Geosciences, University of Oslo, P.O. Box 1047 Blindern, 0316 Oslo, Norway
  • 2Section for Glaciers, Ice and Snow, Hydrology Department, Norwegian Water Resources and Energy Directorate, P.O. Box 5091 Majorstua, 0301 Oslo, Norway
  • 3Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Drive, Fairbanks, AK 99775-7320, USA

Abstract. In this study, we assess glacier area and length changes in mainland Norway from repeat Landsat TM/ETM+-derived inventories and digitized topographic maps. The multi-temporal glacier inventory consists of glacier outlines from three time ranges: 1947 to 1985 (GIn50), 1988 to 1997 (GI1990), and 1999 to 2006 (GI2000). For the northernmost regions, we include an additional inventory (GI1900) based on historic maps surveyed between 1895 and 1907. Area and length changes are assessed per glacier unit, 36 subregions, and for three main parts of Norway: southern, central, and northern. The results show a decrease in the glacierized area from 2994 km2 in GIn50 to 2668 km2 in GI2000 (total 2722 glacier units), corresponding to an area reduction of −326 km2, or −11% of the initial GIn50 area. The average length change for the full epoch (within GIn50 and GI2000) is −240 m. Overall, the comparison reveals both area and length reductions as general patterns, even though some glaciers have advanced. The three northernmost subregions show the highest retreat rates, whereas the central part of Norway shows the lowest change rates. Glacier area and length changes indicate that glaciers in maritime areas in southern Norway have retreated more than glaciers in the interior, and glaciers in the north have retreated more than southern glaciers. These observed spatial trends in glacier change are related to a combination of several factors such as glacier geometry, elevation, and continentality, especially in southern Norway.

Publications Copernicus
Download
Citation