Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 8, issue 6 | Copyright
The Cryosphere, 8, 2135-2145, 2014
https://doi.org/10.5194/tc-8-2135-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 Nov 2014

Research article | 24 Nov 2014

Detailed ice loss pattern in the northern Antarctic Peninsula: widespread decline driven by ice front retreats

T. A. Scambos et al.
Related authors
Extracting recent short-term glacier velocity evolution over Southern Alaska from a large collection of Landsat data
Bas Altena, Ted Scambos, Mark Fahnestock, and Andreas Kääb
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-66,https://doi.org/10.5194/tc-2018-66, 2018
Manuscript under review for TC
Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years
Alex S. Gardner, Geir Moholdt, Ted Scambos, Mark Fahnstock, Stefan Ligtenberg, Michiel van den Broeke, and Johan Nilsson
The Cryosphere, 12, 521-547, https://doi.org/10.5194/tc-12-521-2018,https://doi.org/10.5194/tc-12-521-2018, 2018
Active subglacial lakes and channelized water flow beneath the Kamb Ice Stream
Byeong-Hoon Kim, Choon-Ki Lee, Ki-Weon Seo, Won Sang Lee, and Ted Scambos
The Cryosphere, 10, 2971-2980, https://doi.org/10.5194/tc-10-2971-2016,https://doi.org/10.5194/tc-10-2971-2016, 2016
The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution
J. M. van Wessem, S. R. M. Ligtenberg, C. H. Reijmer, W. J. van de Berg, M. R. van den Broeke, N. E. Barrand, E. R. Thomas, J. Turner, J. Wuite, T. A. Scambos, and E. van Meijgaard
The Cryosphere, 10, 271-285, https://doi.org/10.5194/tc-10-271-2016,https://doi.org/10.5194/tc-10-271-2016, 2016
Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods
A. Pope, T. A. Scambos, M. Moussavi, M. Tedesco, M. Willis, D. Shean, and S. Grigsby
The Cryosphere, 10, 15-27, https://doi.org/10.5194/tc-10-15-2016,https://doi.org/10.5194/tc-10-15-2016, 2016
Related subject area
Antarctic
Bathymetric controls on calving processes at Pine Island Glacier
Jan Erik Arndt, Robert D. Larter, Peter Friedl, Karsten Gohl, Kathrin Höppner, and the Science Team of Expedition PS104
The Cryosphere, 12, 2039-2050, https://doi.org/10.5194/tc-12-2039-2018,https://doi.org/10.5194/tc-12-2039-2018, 2018
Archival processes of the water stable isotope signal in East Antarctic ice cores
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valerie Masson-Delmotte, and Jean Jouzel
The Cryosphere, 12, 1745-1766, https://doi.org/10.5194/tc-12-1745-2018,https://doi.org/10.5194/tc-12-1745-2018, 2018
Tidal bending of ice shelves as a mechanism for large-scale temporal variations in ice flow
Sebastian H. R. Rosier and G. Hilmar Gudmundsson
The Cryosphere, 12, 1699-1713, https://doi.org/10.5194/tc-12-1699-2018,https://doi.org/10.5194/tc-12-1699-2018, 2018
Where is the 1-million-year-old ice at Dome A?
Liyun Zhao, John C. Moore, Bo Sun, Xueyuan Tang, and Xiaoran Guo
The Cryosphere, 12, 1651-1663, https://doi.org/10.5194/tc-12-1651-2018,https://doi.org/10.5194/tc-12-1651-2018, 2018
A new digital elevation model of Antarctica derived from CryoSat-2 altimetry
Thomas Slater, Andrew Shepherd, Malcolm McMillan, Alan Muir, Lin Gilbert, Anna E. Hogg, Hannes Konrad, and Tommaso Parrinello
The Cryosphere, 12, 1551-1562, https://doi.org/10.5194/tc-12-1551-2018,https://doi.org/10.5194/tc-12-1551-2018, 2018
Cited articles
Barrand, N. E., Vaughan, D. G., Steiner, N., Tedesco, M., Kuipers Munneke, P., van den Broeke, M. J., and Hosking, J. S.: Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling, J. Geophys Res., 118, 315–330, https://doi.org/10.1029/2012JF002559, 2013.
Berthier, E., Scambos, T. A., and Shuman, C. A.: Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002, Geophys. Res. Lett., 39 L13501, https://doi.org/10.1029/2012GL051755, 2012.
Christ, A., Talia-Murray, M., Elking, N., Domack, E., Leventer, A., Lavoie, C., Brachfield, S., Yoo, K.-C., Gilbert, R., Jeong, S.-M., Petrushak, S., and Wellner, J.: Late Holocene glacial advance and ice shelf growth in Barilari 1Bay, Graham Land, west Antarctic Peninsula, Geol. Soc. Am. Bull., https://doi.org/10.1130/B31035.1, online first, 2014.
Cook, A. J. and Vaughan, D. G.: Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years, The Cryosphere, 4, 77–98, https://doi.org/10.5194/tc-4-77-2010, 2010.
Cook, A. J., Fox, A. J., Vaughan, D. G., and Ferrigno, J. G.: Retreating glacier fronts on the Antarctic Peninsula over the past half-century, Science, 308, 541–544, 2005.
Publications Copernicus
Download
Short summary
This study of one of the most rapidly changing glacier regions on earth -- the Antarctic Peninsula -- uses two types of satellite data to measure the rates of ice loss in detail for the individual glaciers. The satellite data is laser altimetry from ICESat and stereo image DEM differences. The results show that 24..9 ± 7.8 billion tons of ice are lost from the region north of 66°S on the peninsula each year. The majority of the data cover 2003-2008.
This study of one of the most rapidly changing glacier regions on earth -- the Antarctic...
Citation
Share