Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 8, issue 6
The Cryosphere, 8, 2367–2379, 2014
https://doi.org/10.5194/tc-8-2367-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 8, 2367–2379, 2014
https://doi.org/10.5194/tc-8-2367-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Dec 2014

Research article | 16 Dec 2014

Deglaciation of the Caucasus Mountains, Russia/Georgia, in the 21st century observed with ASTER satellite imagery and aerial photography

M. Shahgedanova et al.

Related authors

Assessment of evolution and risks of glacier lake outbursts in the Djungarskiy Alatau, Central Asia, using Landsat imagery and glacier bed topography modelling
Vassiliy Kapitsa, Maria Shahgedanova, Horst Machguth, Igor Severskiy, and Akhmetkal Medeu
Nat. Hazards Earth Syst. Sci., 17, 1837–1856, https://doi.org/10.5194/nhess-17-1837-2017,https://doi.org/10.5194/nhess-17-1837-2017, 2017
Short summary
Assessment of Glacier Area Change in the Tekes River Basin, Central Tien Shan, Kazakhstan Between 1976 and 2013 Using Landsat and KH-9 Imagery
Zamira Usmanova, Maria Shahgedanova, Igor Severskiy, Gennady Nosenko, and Vassiliy Kapitsa
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-82,https://doi.org/10.5194/tc-2016-82, 2016
Revised manuscript has not been submitted
Short summary
High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009–2012 using snow pit and firn core records
S. Kutuzov, M. Shahgedanova, V. Mikhalenko, P. Ginot, I. Lavrentiev, and S. Kemp
The Cryosphere, 7, 1481–1498, https://doi.org/10.5194/tc-7-1481-2013,https://doi.org/10.5194/tc-7-1481-2013, 2013
Using the significant dust deposition event on the glaciers of Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009 to develop a method for dating and "provenancing" of desert dust events recorded in snow pack
M. Shahgedanova, S. Kutuzov, K. H. White, and G. Nosenko
Atmos. Chem. Phys., 13, 1797–1808, https://doi.org/10.5194/acp-13-1797-2013,https://doi.org/10.5194/acp-13-1797-2013, 2013

Related subject area

Alpine Glaciers
Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014
Levan G. Tielidze, Tobias Bolch, Roger D. Wheate, Stanislav S. Kutuzov, Ivan I. Lavrentiev, and Michael Zemp
The Cryosphere, 14, 585–598, https://doi.org/10.5194/tc-14-585-2020,https://doi.org/10.5194/tc-14-585-2020, 2020
Short summary
Spatial and temporal variations in glacier surface roughness during melting season, as observed at August-one glacier, Qilian mountains, China
Junfeng Liu, Rensheng Chen, and Chuntan Han
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-186,https://doi.org/10.5194/tc-2019-186, 2019
Revised manuscript accepted for TC
Short summary
Strong changes in englacial temperatures despite insignificantchanges in ice thickness at Dôme du Goûter glacier (Mont-Blanc area)
Christian Vincent, Adrien Gilbert, Bruno Jourdain, Luc Piard, Patrick Ginot, Vladimir Mikhalenko, Philippe Possenti, Emmanuel Le Meur, Olivier Laarman, and Delphine Six
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-158,https://doi.org/10.5194/tc-2019-158, 2019
Revised manuscript accepted for TC
Short summary
Glacier thickness estimations of alpine glaciers using data and modeling constraints
Lisbeth Langhammer, Melchior Grab, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 13, 2189–2202, https://doi.org/10.5194/tc-13-2189-2019,https://doi.org/10.5194/tc-13-2189-2019, 2019
Short summary
Unravelling the evolution of Zmuttgletscher and its debris cover since the end of the Little Ice Age
Nico Mölg, Tobias Bolch, Andrea Walter, and Andreas Vieli
The Cryosphere, 13, 1889–1909, https://doi.org/10.5194/tc-13-1889-2019,https://doi.org/10.5194/tc-13-1889-2019, 2019
Short summary

Cited articles

Andreassen, L. M., Paul, F., Kääb, A., and Hausberg, J. E.: Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s, The Cryosphere, 2, 131–145, https://doi.org/10.5194/tc-2-131-2008, 2008.
Bhambri, R., Bolch, T., Chaujar, R. K., and Kulshreshtha S. C.: Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing, J. Glaciol., 57, 543–556, 2011.
Bhambri, R., Bolch, T., and Chaujar, R. K.: Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965-2006, measured through high resolution remote sensing data, Current Sci., 102, 489–494, 2012.
Bolch, T., Buchroithner, M. F., Pieczonka, T., and Kunert, A.: Planimetric and volumetric glacier changes in the Khumbu Himalaya 1962–2005 using Corona and ASTER data, J. Glaciol., 54, 562–600, 2008.
Bolch, T., Menounos, B., and Wheate, R.: Landsat-based inventory of glaciers in western Canada, 1985–2005, Remote Sens. Environ., 114, 127–137, 2010.
Publications Copernicus
Download
Short summary
The paper investigates changes in the area of 498 glaciers in the main Caucasus ridge and on Mt. Elbrus (the highest summit in geographical Europe), Russia/Georgia in the late 20th and 21st centuries using ASTER and Landsat imagery with 15 m resolution from 1999-2001 and 2010-2012 and aerial photography from 1987-2001. The glacier area decreased by 4.7±2.1% or 19.2±8.7 km2 from 1999-2001 to 2010/12. The recession rates of glacier terminus more than doubled between 1987-2000/01 and 2000/01–2010.
The paper investigates changes in the area of 498 glaciers in the main Caucasus ridge and on Mt....
Citation