Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 8, issue 2
The Cryosphere, 8, 651–658, 2014
https://doi.org/10.5194/tc-8-651-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 8, 651–658, 2014
https://doi.org/10.5194/tc-8-651-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Apr 2014

Research article | 14 Apr 2014

Soil erosion and organic carbon export by wet snow avalanches

O. Korup1 and C. Rixen2 O. Korup and C. Rixen
  • 1Institute of Earth and Environmental Sciences, University of Potsdam, 14476 Potsdam, Germany
  • 2WSL Institute for Snow and Avalanche Research SLF, 7260 Davos, Switzerland

Abstract. Many mountain belts sustain prolonged snow cover for parts of the year, although enquiries into rates of erosion in these landscapes have focused almost exclusively on the snow-free periods. This raises the question of whether annual snow cover contributes significantly to modulating rates of erosion in high-relief terrain. In this context, the sudden release of snow avalanches is a frequent and potentially relevant process, judging from the physical damage to subalpine forest ecosystems, and the amount of debris contained in avalanche deposits. To quantitatively constrain this visual impression and to expand the sparse literature, we sampled sediment concentrations of n = 28 river-spanning snow-avalanche deposits (snow bridges) in the area around Davos, eastern Swiss Alps, and inferred an orders-of-magnitude variability in specific fine sediment and organic carbon yields (1.8 to 830 t km−2 yr−1, and 0.04 to 131 t C km−2 yr−1, respectively). A Monte Carlo simulation demonstrates that, with a minimum of free parameters, such variability is inherent to the geometric scaling used for computing specific yields. Moreover, the widely applied method of linearly extrapolating plot scale sample data may be prone to substantial under- or overestimates. A comparison of our inferred yields with previously published work demonstrates the relevance of wet snow avalanches as prominent agents of soil erosion and transporters of biogeochemical constituents to mountain rivers. Given that a number of snow bridges persisted below the insulating debris cover well into the summer months, snow-avalanche deposits also contribute to regulating in-channel sediment and organic debris storage on seasonal timescales. Finally, our results underline the potential shortcomings of neglecting erosional processes in the winter and spring months in mountainous terrain subjected to prominent snow cover.

Publications Copernicus
Download
Citation