Articles | Volume 8, issue 2
https://doi.org/10.5194/tc-8-743-2014
https://doi.org/10.5194/tc-8-743-2014
Research article
 | 
28 Apr 2014
Research article |  | 28 Apr 2014

Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change

B. C. Gunter, O. Didova, R. E. M. Riva, S. R. M. Ligtenberg, J. T. M. Lenaerts, M. A. King, M. R. van den Broeke, and T. Urban

Related authors

Recent warming trends of the Greenland ice sheet documented by historical firn and ice temperature observations and machine learning
Baptiste Vandecrux, Robert S. Fausto, Jason E. Box, Federico Covi, Regine Hock, Åsa K. Rennermalm, Achim Heilig, Jakob Abermann, Dirk van As, Elisa Bjerre, Xavier Fettweis, Paul C. J. P. Smeets, Peter Kuipers Munneke, Michiel R. van den Broeke, Max Brils, Peter L. Langen, Ruth Mottram, and Andreas P. Ahlstrøm
The Cryosphere, 18, 609–631, https://doi.org/10.5194/tc-18-609-2024,https://doi.org/10.5194/tc-18-609-2024, 2024
Short summary
Evolution of Antarctic firn air content under three future warming scenarios
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Peter Kuipers Munneke, and Michiel R. van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2023-2237,https://doi.org/10.5194/egusphere-2023-2237, 2023
Short summary
How well can satellite altimetry and firn models resolve Antarctic firn thickness variations?
Maria T. Kappelsberger, Martin Horwath, Eric Buchta, Matthias O. Willen, Ludwig Schröder, Sanne B. M. Veldhuijsen, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-140,https://doi.org/10.5194/tc-2023-140, 2023
Revised manuscript under review for TC
Short summary
Sentinel-1 detection of perennial firn aquifers in the Antarctic Peninsula
Lena G. Buth, Valeria Di Biase, Peter Kuipers Munneke, Stef Lhermitte, Sanne B. M. Veldhuijsen, Sophie de Roda Husman, Michiel R. van den Broeke, and Bert Wouters
EGUsphere, https://doi.org/10.5194/egusphere-2023-2000,https://doi.org/10.5194/egusphere-2023-2000, 2023
Short summary
Evaluating the impact of enhanced horizontal resolution over the Antarctic domain using a variable-resolution Earth system model
Rajashree Tri Datta, Adam Herrington, Jan T. M. Lenaerts, David P. Schneider, Luke Trusel, Ziqi Yin, and Devon Dunmire
The Cryosphere, 17, 3847–3866, https://doi.org/10.5194/tc-17-3847-2023,https://doi.org/10.5194/tc-17-3847-2023, 2023
Short summary

Related subject area

Antarctic
Geometric amplification and suppression of ice-shelf basal melt in West Antarctica
Jan De Rydt and Kaitlin Naughten
The Cryosphere, 18, 1863–1888, https://doi.org/10.5194/tc-18-1863-2024,https://doi.org/10.5194/tc-18-1863-2024, 2024
Short summary
Alpine topography of the Gamburtsev Subglacial Mountains, Antarctica, mapped from ice sheet surface morphology
Edmund J. Lea, Stewart S. R. Jamieson, and Michael J. Bentley
The Cryosphere, 18, 1733–1751, https://doi.org/10.5194/tc-18-1733-2024,https://doi.org/10.5194/tc-18-1733-2024, 2024
Short summary
Impact of boundary conditions on the modeled thermal regime of the Antarctic ice sheet
In-Woo Park, Emilia Kyung Jin, Mathieu Morlighem, and Kang-Kun Lee
The Cryosphere, 18, 1139–1155, https://doi.org/10.5194/tc-18-1139-2024,https://doi.org/10.5194/tc-18-1139-2024, 2024
Short summary
The staggered retreat of grounded ice in the Ross Sea, Antarctica, since the Last Glacial Maximum (LGM)
Matthew A. Danielson and Philip J. Bart
The Cryosphere, 18, 1125–1138, https://doi.org/10.5194/tc-18-1125-2024,https://doi.org/10.5194/tc-18-1125-2024, 2024
Short summary
The effect of landfast sea ice buttressing on ice dynamic speedup in the Larsen B embayment, Antarctica
Trystan Surawy-Stepney, Anna E. Hogg, Stephen L. Cornford, Benjamin J. Wallis, Benjamin J. Davison, Heather L. Selley, Ross A. W. Slater, Elise K. Lie, Livia Jakob, Andrew Ridout, Noel Gourmelen, Bryony I. D. Freer, Sally F. Wilson, and Andrew Shepherd
The Cryosphere, 18, 977–993, https://doi.org/10.5194/tc-18-977-2024,https://doi.org/10.5194/tc-18-977-2024, 2024
Short summary

Cited articles

Bamber, J. and Riva, R.: The sea level fingerprint of recent ice mass fluxes, The Cryosphere, 4, 621–627, https://doi.org/10.5194/tc-4-621-2010, 2010.
Bettadpur, S.: CSR Level-2 Processing Standards Document for Product Release 04 GRACE 327-742, Center for Space Research, 3.1 Edn., http://podaac.jpl.nasa.gov/gravity/grace-documentation (last accessed 18 April 2014), 2007.
Borsa, A. A., Moholdt, G., Fricker, H. A., and Brunt, K. M.: A range correction for ICESat and its potential impact on ice-sheet mass balance studies, The Cryosphere, 8, 345–357, https://doi.org/10.5194/tc-8-345-2014, 2014.
Chambers, D. P. and Bonin, J. A.: Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean, Ocean Sci., 8, 859–868, https://doi.org/10.5194/os-8-859-2012, 2012.
Chen, J. L., Wilson, C. R., Blankenship, D. D., and Tapley, B. D.: Antarctic mass rates from GRACE, Geophys. Res. Lett., 33, L11502, https://doi.org/10.1029/2006GL026369, 2006.
Download