Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 8, issue 3
The Cryosphere, 8, 931-939, 2014
https://doi.org/10.5194/tc-8-931-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: International Partnerships in Ice Core Sciences (IPICS): 2012...

The Cryosphere, 8, 931-939, 2014
https://doi.org/10.5194/tc-8-931-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 May 2014

Research article | 19 May 2014

Spatial–temporal dynamics of chemical composition of surface snow in East Antarctica along the Progress station–Vostok station transect

T. V. Khodzher1, L. P. Golobokova1, E. Yu. Osipov1, Yu. A. Shibaev2, V. Ya. Lipenkov2, O. P. Osipova3, and J. R. Petit4 T. V. Khodzher et al.
  • 1Limnological Institute SB RAS, Irkutsk, Russia
  • 2Arctic Antarctic Research Institute, St. Petersburg, Russia
  • 3V.B. Sochava Institute of Geography SB RAS, Irkutsk, Russia
  • 4Laboratory of Glaciology and Environmental Geophysics, Grenoble, France

Abstract. In January of 2008, during the 53rd Russian Antarctic Expedition, surface snow samples were taken from 13 shallow (0.7 to 1.5 m depth) snow pits along the first tractor traverse from Progress to Vostok stations, East Antarctica. Sub-surface snow/firn layers are dated from 2.1 to 18 yr. The total length of the coast to inland traverse is more than 1280 km. Here we analysed spatial variability of concentrations of sulphate ions and elements and their fluxes in the snow deposited within the 2006–2008 time interval. Anions were analysed by high-performance liquid chromatography (HPLC), and the determination of selected metals, including Na, K, Mg, Ca and Al, was carried out by mass spectroscopy with atomization by induced coupled plasma (ICP-MS). Surface snow concentration records were examined for trends versus distance inland, elevation, accumulation rate and slope gradient. Na shows a significant positive correlation with accumulation rate, which decreases as distance from the sea and altitude increase. K, Ca and Mg concentrations do not show any significant relationship either with distance inland or with elevation. Maximal concentrations of these elements with a prominent Al peak are revealed in the middle part of the traverse (500–600 km from the coast). Analysis of element correlations and atmospheric circulation patterns allow us to suggest their terrestrial origin (e.g. aluminosilicates carried as a continental dust) from the Antarctic nunatak areas. Sulphate concentrations show no significant relationship with distance inland, elevation, slope gradient and accumulation rate. Non-sea salt secondary sulphate is the most important contribution to the total sulphate budget along the traverse. Sulphate of volcanic origin attributed to the Pinatubo eruption (1991) was revealed in the snow pit at 1276 km (depth 120–130 cm).

Publications Copernicus
Special issue
Download
Citation
Share