Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 8, issue 3 | Copyright
The Cryosphere, 8, 997-1018, 2014
https://doi.org/10.5194/tc-8-997-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 May 2014

Research article | 27 May 2014

SMOS-derived thin sea ice thickness: algorithm baseline, product specifications and initial verification

X. Tian-Kunze et al.
Related authors
Snow thickness retrieval over thick Arctic sea ice using SMOS satellite data
N. Maaß, L. Kaleschke, X. Tian-Kunze, and M. Drusch
The Cryosphere, 7, 1971-1989, https://doi.org/10.5194/tc-7-1971-2013,https://doi.org/10.5194/tc-7-1971-2013, 2013
Related subject area
Sea Ice
Reflective properties of melt ponds on sea ice
Aleksey Malinka, Eleonora Zege, Larysa Istomina, Georg Heygster, Gunnar Spreen, Donald Perovich, and Chris Polashenski
The Cryosphere, 12, 1921-1937, https://doi.org/10.5194/tc-12-1921-2018,https://doi.org/10.5194/tc-12-1921-2018, 2018
Improving Met Office seasonal forecasts of Arctic sea ice using assimilation of CryoSat-2 thickness
Edward W. Blockley and K. Andrew Peterson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-62,https://doi.org/10.5194/tc-2018-62, 2018
Revised manuscript accepted for TC
The color of melt ponds on Arctic sea ice
Peng Lu, Matti Leppäranta, Bin Cheng, Zhijun Li, Larysa Istomina, and Georg Heygster
The Cryosphere, 12, 1331-1345, https://doi.org/10.5194/tc-12-1331-2018,https://doi.org/10.5194/tc-12-1331-2018, 2018
On the retrieval of sea ice thickness and snow depth using concurrent laser altimetry and L-band remote sensing data
Lu Zhou, Shiming Xu, Jiping Liu, and Bin Wang
The Cryosphere, 12, 993-1012, https://doi.org/10.5194/tc-12-993-2018,https://doi.org/10.5194/tc-12-993-2018, 2018
A network model for characterizing brine channels in sea ice
Ross M. Lieblappen, Deip D. Kumar, Scott D. Pauls, and Rachel W. Obbard
The Cryosphere, 12, 1013-1026, https://doi.org/10.5194/tc-12-1013-2018,https://doi.org/10.5194/tc-12-1013-2018, 2018
Cited articles
Andersen, S., Tonboe, R., Kaleschke, L., Heygster, G., and Pedersen, L.: Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice, J. Geophys. Res., 112, C08004, https://doi.org/10.1029/2006JC003543, 2007.
Antonov, J., Seidov, D., Boyer, T., Locarnini, R., Mishonov, A., Garcia, H., Baranova, O., Zweng, M., and Johnson, D.: World Ocean Atlas 2009, Vol. 2, Salinity, edited by: Levitus, S., 184 pp., US Gov. Print. Off., Washington, DC, 2010.
Bertino, L. and Lisæter, K. A.: The TOPAZ monitoring and prediction system for the Atlantic and Arctic Oceans, Journal of Operational Oceanography, 1, 15–19, 2008.
Brath, M., Scharffenberg, M. G., Serra, N., and Stammer, D.: Altimeter-based estimates of eddy variability and eddy transports in the subpolar North Atlantic, Mar. Geod., 33, 472–503, 2010.
Publications Copernicus
Download
Citation
Share