Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 9, issue 3
The Cryosphere, 9, 1129–1146, 2015
https://doi.org/10.5194/tc-9-1129-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 9, 1129–1146, 2015
https://doi.org/10.5194/tc-9-1129-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 May 2015

Research article | 27 May 2015

Air temperature variability over three glaciers in the Ortles–Cevedale (Italian Alps): effects of glacier fragmentation, comparison of calculation methods, and impacts on mass balance modeling

L. Carturan1, F. Cazorzi2, F. De Blasi1, and G. Dalla Fontana1 L. Carturan et al.
  • 1Department of Land, Environment, Agriculture and Forestry, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
  • 2Department of Agriculture and Environmental Sciences, University of Udine, via delle Scienze 208, 33100, Udine, Italy

Abstract. Glacier mass balance models rely on accurate spatial calculation of input data, in particular air temperature. Lower temperatures (the so-called glacier cooling effect) and lower temperature variability (the so-called glacier damping effect) generally occur over glaciers compared to ambient conditions. These effects, which depend on the geometric characteristics of glaciers and display a high spatial and temporal variability, have been mostly investigated on medium to large glaciers so far, while observations on smaller ice bodies (< 0.5 km2) are scarce. Using a data set from eight on-glacier and four off-glacier weather stations, collected in the summers of 2010 and 2011, we analyzed the air temperature variability and wind regime over three different glaciers in the Ortles–Cevedale. The magnitude of the cooling effect and the occurrence of katabatic boundary layer (KBL) processes showed remarkable differences among the three ice bodies, suggesting the likely existence of important reinforcing mechanisms during glacier decay and fragmentation. The methods proposed by Greuell and Böhm (1998) and Shea and Moore (2010) for calculating on-glacier temperature from off-glacier data did not fully reproduce our observations. Among them, the more physically based procedure of Greuell and Böhm (1998) provided the best overall results where the KBL prevails, but it was not effective elsewhere (i.e., on smaller ice bodies and close to the glacier margins). The accuracy of air temperature estimations strongly impacted the results from a mass balance model which was applied to the three investigated glaciers. Most importantly, even small temperature deviations caused distortions in parameter calibration, thus compromising the model generalizability.

Publications Copernicus
Download
Short summary
Using a dataset from 12 weather stations collected in 2010 and 2011, we analyzed the air temperature variability and wind regime over three different glaciers in the Ortles-Cevedale. The magnitude of the cooling effect and the occurrence of katabatic boundary layer processes showed remarkable differences among the three ice bodies, suggesting the likely existence of important reinforcing mechanisms during glacier decay and fragmentation, with significant impacts for glacier mass balance modeling.
Using a dataset from 12 weather stations collected in 2010 and 2011, we analyzed the air...
Citation