Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 9, issue 3
The Cryosphere, 9, 1249–1264, 2015
https://doi.org/10.5194/tc-9-1249-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 9, 1249–1264, 2015
https://doi.org/10.5194/tc-9-1249-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Jun 2015

Research article | 19 Jun 2015

Theoretical analysis of errors when estimating snow distribution through point measurements

E. Trujillo and M. Lehning
Related authors  
Version 1 of a sea ice module for the physics-based, detailed, multi-layer SNOWPACK model
Nander Wever, Leonard Rossmann, Nina Maaß, Katherine C. Leonard, Lars Kaleschke, Marcel Nicolaus, and Michael Lehning
Geosci. Model Dev., 13, 99–119, https://doi.org/10.5194/gmd-13-99-2020,https://doi.org/10.5194/gmd-13-99-2020, 2020
Short summary
Radar measurements of blowing snow off a mountain ridge
Benjamin Walter, Hendrik Huwald, Josué Gehring, Yves Bühler, and Michael Lehning
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-260,https://doi.org/10.5194/tc-2019-260, 2019
Manuscript under review for TC
Short summary
Understanding snow bedform formation by adding sintering to a cellular automata model
Varun Sharma, Louise Braud, and Michael Lehning
The Cryosphere, 13, 3239–3260, https://doi.org/10.5194/tc-13-3239-2019,https://doi.org/10.5194/tc-13-3239-2019, 2019
Short summary
On the suitability of the Thorpe–Mason model for calculating sublimation of saltating snow
Varun Sharma, Francesco Comola, and Michael Lehning
The Cryosphere, 12, 3499–3509, https://doi.org/10.5194/tc-12-3499-2018,https://doi.org/10.5194/tc-12-3499-2018, 2018
Short summary
Spatial variability in snow precipitation and accumulation in COSMO–WRF simulations and radar estimations over complex terrain
Franziska Gerber, Nikola Besic, Varun Sharma, Rebecca Mott, Megan Daniels, Marco Gabella, Alexis Berne, Urs Germann, and Michael Lehning
The Cryosphere, 12, 3137–3160, https://doi.org/10.5194/tc-12-3137-2018,https://doi.org/10.5194/tc-12-3137-2018, 2018
Short summary
Related subject area  
Seasonal Snow
Simulated single-layer forest canopies delay Northern Hemisphere snowmelt
Markus Todt, Nick Rutter, Christopher G. Fletcher, and Leanne M. Wake
The Cryosphere, 13, 3077–3091, https://doi.org/10.5194/tc-13-3077-2019,https://doi.org/10.5194/tc-13-3077-2019, 2019
Short summary
Spatiotemporal variability and decadal trends of snowmelt processes on Antarctic sea ice observed by satellite scatterometers
Stefanie Arndt and Christian Haas
The Cryosphere, 13, 1943–1958, https://doi.org/10.5194/tc-13-1943-2019,https://doi.org/10.5194/tc-13-1943-2019, 2019
Converting snow depth to snow water equivalent using climatological variables
David F. Hill, Elizabeth A. Burakowski, Ryan L. Crumley, Julia Keon, J. Michelle Hu, Anthony A. Arendt, Katreen Wikstrom Jones, and Gabriel J. Wolken
The Cryosphere, 13, 1767–1784, https://doi.org/10.5194/tc-13-1767-2019,https://doi.org/10.5194/tc-13-1767-2019, 2019
Short summary
Avalanches and micrometeorology driving mass and energy balance of the lowest perennial ice field of the Alps: a case study
Rebecca Mott, Andreas Wolf, Maximilian Kehl, Harald Kunstmann, Michael Warscher, and Thomas Grünewald
The Cryosphere, 13, 1247–1265, https://doi.org/10.5194/tc-13-1247-2019,https://doi.org/10.5194/tc-13-1247-2019, 2019
Short summary
The optical characteristics and sources of chromophoric dissolved organic matter (CDOM) in seasonal snow of northwestern China
Yue Zhou, Hui Wen, Jun Liu, Wei Pu, Qingcai Chen, and Xin Wang
The Cryosphere, 13, 157–175, https://doi.org/10.5194/tc-13-157-2019,https://doi.org/10.5194/tc-13-157-2019, 2019
Short summary
Cited articles  
Blöschl, G.: Scaling issues in snow hydrology, Hydrol. Process., 13, 2149–2175, 1999.
Chang, A. T. C., Kelly, R. E. J., Josberger, E. G., Armstrong, R. L., Foster, J. L., and Mognard, N. M.: Analysis of ground-measured and passive-microwave-derived snow depth variations in midwinter across the northern Great Plains, J. Hydrometeor., 6, 20–33, https://doi.org/10.1175/Jhm-405.1, 2005.
Cline, D., Yueh, S., Chapman, B., Stankov, B., Gasiewski, A., Masters, D., Elder, K., Kelly, R., Painter, T. H., Miller, S., Katzberg, S., and Mahrt, L.: NASA Cold Land Processes Experiment (CLPX 2002/03): Airborne Remote Sensing, J. Hydrometeor., 10, 338–346, 2009.
Cressie, N.: Statistics for spatial data, John Wiley & Sons, Inc., USA, 900 pp., 1993.
Deems, J. S., Fassnacht, S. R., and Elder, K. J.: Interannual Consistency in Fractal Snow Depth Patterns at Two Colorado Mountain Sites, J. Hydrometeor., 9, 977–988, https://doi.org/10.1175/2008jhm901.1, 2008.
Publications Copernicus
Download
Short summary
In this article, we present a methodology for the objective evaluation of the error in capturing mean snow depths from point measurements. We demonstrate, using LIDAR snow depths, how the model can be used for assisting the design of survey strategies such that the error is minimized or an estimation threshold is achieved. Furthermore, the model can be extended to other spatially distributed snow variables (e.g., SWE) whose statistical properties are comparable to those of snow depth.
In this article, we present a methodology for the objective evaluation of the error in capturing...
Citation