Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year
    5.558
  • CiteScore value: 4.84 CiteScore
    4.84
  • SNIP value: 1.425 SNIP 1.425
  • IPP value: 4.65 IPP 4.65
  • SJR value: 3.034 SJR 3.034
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
  • h5-index value: 52 h5-index 52
Volume 9, issue 4
The Cryosphere, 9, 1505-1521, 2015
https://doi.org/10.5194/tc-9-1505-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 9, 1505-1521, 2015
https://doi.org/10.5194/tc-9-1505-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 07 Aug 2015

Research article | 07 Aug 2015

Impact of model developments on present and future simulations of permafrost in a global land-surface model

S. E. Chadburn et al.
Viewed  
Total article views: 4,172 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
2,867 1,077 228 4,172 160 213
  • HTML: 2,867
  • PDF: 1,077
  • XML: 228
  • Total: 4,172
  • BibTeX: 160
  • EndNote: 213
Views and downloads (calculated since 25 Mar 2015)
Cumulative views and downloads (calculated since 25 Mar 2015)
Cited  
Saved (final revised paper)  
Saved (discussion paper)  
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 18 Jun 2019
Publications Copernicus
Download
Short summary
In this paper we use a global land-surface model to study the dynamics of Arctic permafrost. We examine the impact of new and improved processes in the model, namely soil depth and resolution, organic soils, moss and the representation of snow. These improvements make the simulated soil temperatures and thaw depth significantly more realistic. Simulations under future climate scenarios show that permafrost thaws more slowly in the new model version, but still a large amount is lost by 2100.
In this paper we use a global land-surface model to study the dynamics of Arctic permafrost. We...
Citation