Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 9, issue 4
The Cryosphere, 9, 1663–1683, 2015
https://doi.org/10.5194/tc-9-1663-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 9, 1663–1683, 2015
https://doi.org/10.5194/tc-9-1663-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Aug 2015

Research article | 21 Aug 2015

ENSO influence on surface energy and mass balance at Shallap Glacier, Cordillera Blanca, Peru

F. Maussion et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Fabien Maussion on behalf of the Authors (24 Jul 2015)  Author's response    Manuscript
ED: Publish subject to technical corrections (31 Jul 2015) by Tobias Bolch
Publications Copernicus
Download
Short summary
Using a newly developed open-source tool, we downscale the glacier surface energy and mass balance fluxes at Shallap Glacier. This allows an unprecedented quantification of the ENSO influence on a tropical glacier at climatological time scales (1980-2013). We find a stronger and steadier anti-correlation between Pacific sea-surface temperature (SST) and glacier mass balance than previously reported and provide keys to understand its mechanism.
Using a newly developed open-source tool, we downscale the glacier surface energy and mass...
Citation