Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
The Cryosphere, 9, 1721-1733, 2015
https://doi.org/10.5194/tc-9-1721-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
27 Aug 2015
Exploring the utility of quantitative network design in evaluating Arctic sea ice thickness sampling strategies
T. Kaminski1,a, F. Kauker2, H. Eicken3, and M. Karcher2 1The Inversion Lab, Martinistr. 21, 20251 Hamburg, Germany
2OASys, Lerchenstraße 28a, 22767 Hamburg, Germany
3Geophysical Institute and International Arctic Research Center, University of Alaska Fairbanks, P.O. Box 757320, Fairbanks, AK 99775-7320, USA
aformerly at: FastOpt, Hamburg, Germany
Abstract. We present a quantitative network design (QND) study of the Arctic sea ice–ocean system using a software tool that can evaluate hypothetical observational networks in a variational data assimilation system. For a demonstration, we evaluate two idealised flight transects derived from NASA's Operation IceBridge airborne ice surveys in terms of their potential to improve 10-day to 5-month sea ice forecasts. As target regions for the forecasts we select the Chukchi Sea, an area particularly relevant for maritime traffic and offshore resource exploration, as well as two areas related to the Barnett ice severity index (BSI), a standard measure of shipping conditions along the Alaskan coast that is routinely issued by ice services. Our analysis quantifies the benefits of sampling upstream of the target area and of reducing the sampling uncertainty. We demonstrate how observations of sea ice and snow thickness can constrain ice and snow variables in a target region and quantify the complementarity of combining two flight transects. We further quantify the benefit of improved atmospheric forecasts and a well-calibrated model.

Citation: Kaminski, T., Kauker, F., Eicken, H., and Karcher, M.: Exploring the utility of quantitative network design in evaluating Arctic sea ice thickness sampling strategies, The Cryosphere, 9, 1721-1733, https://doi.org/10.5194/tc-9-1721-2015, 2015.
Publications Copernicus
Download
Short summary
We present a quantitative network design study of the Arctic sea ice-ocean system. For a demonstration, we evaluate two idealised hypothetical flight transects derived from NASA’s Operation IceBridge airborne ice surveys in terms of their potential to improve 10-day to 5-month sea ice forecasts. Our analysis quantifies the benefits of sampling upstream of the target area and of reducing the sampling uncertainty. It further quantifies the complementarity of combining two flight transects.
We present a quantitative network design study of the Arctic sea ice-ocean system. For a...
Share