Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 9, issue 5
The Cryosphere, 9, 1797–1817, 2015
https://doi.org/10.5194/tc-9-1797-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 9, 1797–1817, 2015
https://doi.org/10.5194/tc-9-1797-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 15 Sep 2015

Research article | 15 Sep 2015

Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations

N. Ivanova et al.

Related authors

The impact of melt ponds on summertime microwave brightness temperatures and sea-ice concentrations
Stefan Kern, Anja Rösel, Leif Toudal Pedersen, Natalia Ivanova, Roberto Saldo, and Rasmus Tage Tonboe
The Cryosphere, 10, 2217–2239, https://doi.org/10.5194/tc-10-2217-2016,https://doi.org/10.5194/tc-10-2217-2016, 2016
Short summary
Error assessment of satellite-derived lead fraction in the Arctic
Natalia Ivanova, Pierre Rampal, and Sylvain Bouillon
The Cryosphere, 10, 585–595, https://doi.org/10.5194/tc-10-585-2016,https://doi.org/10.5194/tc-10-585-2016, 2016
Short summary
Uncertainties in Arctic sea ice thickness and volume: new estimates and implications for trends
M. Zygmuntowska, P. Rampal, N. Ivanova, and L. H. Smedsrud
The Cryosphere, 8, 705–720, https://doi.org/10.5194/tc-8-705-2014,https://doi.org/10.5194/tc-8-705-2014, 2014

Related subject area

Sea Ice
Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks
Young Jun Kim, Hyun-Cheol Kim, Daehyeon Han, Sanggyun Lee, and Jungho Im
The Cryosphere, 14, 1083–1104, https://doi.org/10.5194/tc-14-1083-2020,https://doi.org/10.5194/tc-14-1083-2020, 2020
Short summary
Variability scaling and consistency in airborne and satellite altimetry measurements of Arctic sea ice
Shiming Xu, Lu Zhou, and Bin Wang
The Cryosphere, 14, 751–767, https://doi.org/10.5194/tc-14-751-2020,https://doi.org/10.5194/tc-14-751-2020, 2020
Short summary
Sea ice volume variability and water temperature in the Greenland Sea
Valeria Selyuzhenok, Igor Bashmachnikov, Robert Ricker, Anna Vesman, and Leonid Bobylev
The Cryosphere, 14, 477–495, https://doi.org/10.5194/tc-14-477-2020,https://doi.org/10.5194/tc-14-477-2020, 2020
Short summary
Sea ice export through the Fram Strait derived from a combined model and satellite data set
Chao Min, Longjiang Mu, Qinghua Yang, Robert Ricker, Qian Shi, Bo Han, Renhao Wu, and Jiping Liu
The Cryosphere, 13, 3209–3224, https://doi.org/10.5194/tc-13-3209-2019,https://doi.org/10.5194/tc-13-3209-2019, 2019
Short summary
Estimating early-winter Antarctic sea ice thickness from deformed ice morphology
M. Jeffrey Mei, Ted Maksym, Blake Weissling, and Hanumant Singh
The Cryosphere, 13, 2915–2934, https://doi.org/10.5194/tc-13-2915-2019,https://doi.org/10.5194/tc-13-2915-2019, 2019
Short summary

Cited articles

Andersen, S., Tonboe, R., Kern, S., and Schyberg, H.: Improved retrieval of sea ice total concentration from spaceborne passive microwave observations using numerical weather prediction model fields: an intercomparison of nine algorithms, Remote Sens. Environ., 104, 374–392, 2006.
Andersen, S., Tonboe, R., Kaleschke, L., Heygster, G., and Pedersen, L. T.: Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice, J. Geophys. Res., 112, C08004, https://doi.org/10.1029/2006JC003543, 2007.
Ashcroft, P. and Wentz, F. J.: AMSR-E/Aqua L2A Global Swath Spatially-Resampled Brightness Temperatures, Version 2, NASA DAAC at the National Snow and Ice Data Center, Boulder, Colorado USA, https://doi.org/10.5067/AMSR-E/AE_L2A.002, 2003.
Brucker, L., Cavalieri, D. J., Markus, T., and Ivanoff, A.: NASA Team 2 Sea Ice Concentration Algorithm Retrieval Uncertainty, IEEE T. Geosci. Remote, 52, 7336–7352, https://doi.org/10.1109/TGRS.2014.2311376, 2014.
Cavalieri, D. J.: A microwave technique for mapping thin sea ice, J. Geophys. Res., 99, 12561–12572, https://doi.org/10.1029/94JC00707, 1994.
Publications Copernicus
Download
Short summary
Thirty sea ice algorithms are inter-compared and evaluated systematically over low and high sea ice concentrations, as well as in the presence of thin ice and melt ponds. A hybrid approach is suggested to retrieve sea ice concentration globally for climate monitoring purposes. This approach consists of a combination of two algorithms plus the implementation of a dynamic tie point and atmospheric correction of input brightness temperatures.
Thirty sea ice algorithms are inter-compared and evaluated systematically over low and high sea...
Citation