Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 9, issue 5
The Cryosphere, 9, 1895–1913, 2015
https://doi.org/10.5194/tc-9-1895-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 9, 1895–1913, 2015
https://doi.org/10.5194/tc-9-1895-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 25 Sep 2015

Research article | 25 Sep 2015

CryoSat-2 delivers monthly and inter-annual surface elevation change for Arctic ice caps

L. Gray et al.
Related authors  
A revised calibration of the interferometric mode of the CryoSat-2 radar altimeter improves ice height and height change measurements in western Greenland
Laurence Gray, David Burgess, Luke Copland, Thorben Dunse, Kirsty Langley, and Geir Moholdt
The Cryosphere, 11, 1041–1058, https://doi.org/10.5194/tc-11-1041-2017,https://doi.org/10.5194/tc-11-1041-2017, 2017
Short summary
Interferometric swath processing of Cryosat data for glacial ice topography
L. Gray, D. Burgess, L. Copland, R. Cullen, N. Galin, R. Hawley, and V. Helm
The Cryosphere, 7, 1857–1867, https://doi.org/10.5194/tc-7-1857-2013,https://doi.org/10.5194/tc-7-1857-2013, 2013
Related subject area  
Arctic (e.g. Greenland)
A distributed temperature profiling method for assessing spatial variability in ground temperatures in a discontinuous permafrost region of Alaska
Emmanuel Léger, Baptiste Dafflon, Yves Robert, Craig Ulrich, John E. Peterson, Sébastien C. Biraud, Vladimir E. Romanovsky, and Susan S. Hubbard
The Cryosphere, 13, 2853–2867, https://doi.org/10.5194/tc-13-2853-2019,https://doi.org/10.5194/tc-13-2853-2019, 2019
Short summary
Greenland Ice Sheet late-season melt: investigating multiscale drivers of K-transect events
Thomas J. Ballinger, Thomas L. Mote, Kyle Mattingly, Angela C. Bliss, Edward Hanna, Dirk van As, Melissa Prieto, Saeideh Gharehchahi, Xavier Fettweis, Brice Noël, Paul C. J. P. Smeets, Carleen H. Reijmer, Mads H. Ribergaard, and John Cappelen
The Cryosphere, 13, 2241–2257, https://doi.org/10.5194/tc-13-2241-2019,https://doi.org/10.5194/tc-13-2241-2019, 2019
Short summary
Arctic freshwater fluxes: sources, tracer budgets and inconsistencies
Alexander Forryan, Sheldon Bacon, Takamasa Tsubouchi, Sinhué Torres-Valdés, and Alberto C. Naveira Garabato
The Cryosphere, 13, 2111–2131, https://doi.org/10.5194/tc-13-2111-2019,https://doi.org/10.5194/tc-13-2111-2019, 2019
Short summary
Induced surface fluxes: a new framework for attributing Arctic sea ice volume balance biases to specific model errors
Alex West, Mat Collins, Ed Blockley, Jeff Ridley, and Alejandro Bodas-Salcedo
The Cryosphere, 13, 2001–2022, https://doi.org/10.5194/tc-13-2001-2019,https://doi.org/10.5194/tc-13-2001-2019, 2019
Short summary
Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution
Caixin Wang, Robert M. Graham, Keguang Wang, Sebastian Gerland, and Mats A. Granskog
The Cryosphere, 13, 1661–1679, https://doi.org/10.5194/tc-13-1661-2019,https://doi.org/10.5194/tc-13-1661-2019, 2019
Short summary
Cited articles  
Abdalati, W., Krabill, F., Manizade, S., Martin, C., Sonntag, J., Swift, R., Thomas, R., Yungel, J., and Koerner, R.: Elevation changes of ice caps in the Canadian Arctic Archipelago, J. Geophys. Res.-Earth, 109, F04007, https://doi.org/10.1029/2003JF000045, 2004.
Andrews, J. T. and Barnett, D. M.: Holocene (Neoglacial) moraine and proglacial lake chronology, Barnes Ice Cap, Canada, Boreas, 6, 341–358, 1979.
Arthern, R. J., Wingham, D. J., and Ridout, A. L.: Controls on ERS altimeter measurements over ice sheets: Footprint-scale topography, backscatter fluctuations, and the dependence of microwave penetration on satellite orientation, J. Geophys. Res.-Atmos., 106, 33471–33484, https://doi.org/10.1029/2001JD000498, 2001.
Baird, P. D.: Method of nourishment of the Barnes ice cap, J. Glaciol., 2, 2–9, 1952.
Publications Copernicus
Download
Short summary
We show that the Cryosat (CS) radar altimeter can measure elevation change on a variety of Arctic ice caps. With the frequent coverage of Cryosat it is even possible to track summer surface height loss due to extensive melt; no other satellite altimeter has been able to do this. However, we also show that under cold conditions there is a bias between the surface and Cryosat detected elevation which varies with the conditions of the upper snow and firn layers.
We show that the Cryosat (CS) radar altimeter can measure elevation change on a variety of...
Citation