Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year
  • CiteScore value: 4.84 CiteScore
  • SNIP value: 1.425 SNIP 1.425
  • IPP value: 4.65 IPP 4.65
  • SJR value: 3.034 SJR 3.034
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
  • h5-index value: 52 h5-index 52
Volume 9, issue 5
The Cryosphere, 9, 1995-2008, 2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: The World Meteorological Organization Solid Precipitation...

The Cryosphere, 9, 1995-2008, 2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Oct 2015

Research article | 28 Oct 2015

Precipitation measurement intercomparison in the Qilian Mountains, north-eastern Tibetan Plateau

R. Chen, J. Liu, E. Kang, Y. Yang, C. Han, Z. Liu, Y. Song, W. Qing, and P. Zhu R. Chen et al.
  • Qilian Alpine Ecology and Hydrology Research Station, Key Laboratory of Inland River Ecohydrology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract. An experimental field study of wind-induced bias in precipitation measurements was conducted from September 2010 to April 2015 at a grassland site (99°52.9´ E, 38°16.1´ N; 2980 m) in the Hulu watershed in the Qilian Mountains, on the north-eastern Tibetan Plateau, in China. The experiment included (1) an unshielded Chinese standard precipitation gauge (CSPGUN; orifice diameter = 20 cm, height = 70 cm), (2) a single Alter shield around a CSPG (CSPGSA), (3) a CSPG in a pit (CSPGPIT) and (4) a Double-Fence International Reference (DFIR) with a Tretyakov-shielded CSPG (CSPGDFIR). The catch ratio (CR) used the CSPGDFIR as a reference (CR = CSPGX/CSPGDFIR, %; X denotes UN, SA or PIT). The results show that the CSPGSA, CSPGPIT and CSPGDIFR caught 0.9, 4.5 and 3.4 % more rainfall; 7.7, 15.6 and 14.2 % more mixed precipitation (snow with rain, rain with snow); 11.1, 16.0 and 20.6 % more snowfall and 2.0, 6.0 and 5.3 % more precipitation (of all types), respectively, than the CSPGUN from September 2012 to April 2015. The CSPGPIT and CSPGDFIR caught 3.6 and 2.5 % more rainfall; 7.3 and 6.0 % more mixed precipitation; 4.4 and 8.5 % more snowfall; and 3.9 and 3.2 % more total precipitation, respectively, than the CSPGSA. However, the CSPGDFIR caught 1.0 % less rainfall; 1.2 % less mixed precipitation; 3.9 % more snowfall and 0.6 % less total precipitation than the CSPGPIT. From most to least precipitation measured, the instruments ranked as follows: for rain and mixed precipitation, CSPGPIT > CSPGDFIR > CSPGSA > CSPGUN; for snowfall, CSPGDFIR > CSPGPIT > CSPGSA > CSPGUN. The CR vs. 10 m wind speed for the period of precipitation indicated that with increasing wind speed from 0 to 8.0 m s−1, the CRUN/DFIR and CRSA/DFIR for rainfall decreased slightly. For mixed precipitation, the wind speed showed no significant effect on CRUN/DFIR and CRSA/DFIR below 3.5 m s−1. For snowfall, the CRUN/DFIR and CRSA/DFIR vs. wind speed showed that CR decreased with increasing wind speed. The precipitation measured by the shielded gauges increased linearly relative to that of the unshielded gauges. However, the increase in the ratio of the linear correlation should depend on specific environmental conditions. A comparison of the wind-induced bias indicates that the CSPGPIT could be used as a reference gauge for rain, mixed and snow precipitation events at the experimental site. As both the PIT and DFIR effectively prevented wind from influencing the catch of the precipitation gauge, the CRPIT/DFIR had no relationship with wind speed. Cubic polynomials and exponential functions were used to quantify the relationship between catch ratio and wind speed. For snow, for both event and daily scales, the CRUN/DFIR and CRSA/DFIR were significantly related to wind speed; while for rain and mixed precipitation, only the event scale showed a significant relationship.

Publications Copernicus
Special issue
Short summary
The catch ratio of Chinese standard precipitation gauge vs. wind speed relationship for different precipitation types was well quantified by cubic polynomials and exponential functions using 5-year field data in the high-mountain environment of the Tibetan Plateau. The daily precipitation measured by shielded gauges increases linearly with that of unshielded gauges. The pit gauge catches the most local precipitation in rainy season and could be used as a reference in most regions of China.
The catch ratio of Chinese standard precipitation gauge vs. wind speed relationship for...