Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 9, issue 6
The Cryosphere, 9, 2135–2148, 2015
https://doi.org/10.5194/tc-9-2135-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 9, 2135–2148, 2015
https://doi.org/10.5194/tc-9-2135-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 18 Nov 2015

Research article | 18 Nov 2015

From Doktor Kurowski's Schneegrenze to our modern glacier equilibrium line altitude (ELA)

R. J. Braithwaite
Related subject area  
Alpine Glaciers
Glacier thickness estimations of alpine glaciers using data and modeling constraints
Lisbeth Langhammer, Melchior Grab, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 13, 2189–2202, https://doi.org/10.5194/tc-13-2189-2019,https://doi.org/10.5194/tc-13-2189-2019, 2019
Short summary
Unravelling the evolution of Zmuttgletscher and its debris cover since the end of the Little Ice Age
Nico Mölg, Tobias Bolch, Andrea Walter, and Andreas Vieli
The Cryosphere, 13, 1889–1909, https://doi.org/10.5194/tc-13-1889-2019,https://doi.org/10.5194/tc-13-1889-2019, 2019
Short summary
Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble
Harry Zekollari, Matthias Huss, and Daniel Farinotti
The Cryosphere, 13, 1125–1146, https://doi.org/10.5194/tc-13-1125-2019,https://doi.org/10.5194/tc-13-1125-2019, 2019
Short summary
Robust uncertainty assessment of the spatio-temporal transferability of glacier mass and energy balance models
Tobias Zolles, Fabien Maussion, Stephan Peter Galos, Wolfgang Gurgiser, and Lindsey Nicholson
The Cryosphere, 13, 469–489, https://doi.org/10.5194/tc-13-469-2019,https://doi.org/10.5194/tc-13-469-2019, 2019
Short summary
Impacts of topographic shading on direct solar radiation for valley glaciers in complex topography
Matthew Olson and Summer Rupper
The Cryosphere, 13, 29–40, https://doi.org/10.5194/tc-13-29-2019,https://doi.org/10.5194/tc-13-29-2019, 2019
Short summary
Cited articles  
Abermann, J., Lambrecht, A., Fischer, A., and Kuhn, M.: Quantifying changes and trends in glacier area and volume in the Austrian Ötztal Alps (1969–1997–2006), The Cryosphere, 3, 205–215, https://doi.org/10.5194/tc-3-205-2009, 2009.
Anonymous: Mass-balance terms, J. Glaciol., 52, 3–7, 1969.
Armstrong, T., Robert, B., and Swithinbank, C.: Illustrated glossary of snow and ice (2nd ed.), Scott Polar Research Institute, Cambridge, 60 pp., 1973.
Baird, P. D.: The glaciological studies of the Baffin Island Expedition, 1950. Part 1, Methods of nourishment of the Barnes Ice Cap, J. Glaciol., 2, 17–19, 1952.
Bakke, J. and Nesje, A.: Equilibrium-Line Altitude (ELA), in: Encyclopedia of Snow, Ice and Glaciers, edited by: Singh, V., Singh, P., and Haritashya, U., Springer, the Netherlands, 268–277, 2011.
Publications Copernicus
Download
Short summary
Kurowski suggested in 1891 that ELA is equal to the mean altitude of the glacier when the glacier is in balance. I compare mean altitude with balanced-budget ELA for 103 modern glaciers. Kurowski’s mean altitude is significantly higher (at 95% level) than balanced-budget ELA for 19 outlet and 42 valley glaciers, but not significantly higher for 34 mountain glaciers. The error in Kurowski mean altitude as a predictor of balanced budget might be due to non-linearity in balance gradients.
Kurowski suggested in 1891 that ELA is equal to the mean altitude of the glacier when the...
Citation