Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 9, issue 1
The Cryosphere, 9, 217–228, 2015
https://doi.org/10.5194/tc-9-217-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 9, 217–228, 2015
https://doi.org/10.5194/tc-9-217-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 06 Feb 2015

Research article | 06 Feb 2015

Enthalpy benchmark experiments for numerical ice sheet models

T. Kleiner et al.

Related authors

Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020,https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century
Helene Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe Ouchi, Cecile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Rupert Gladstone, Nicholas Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hatterman, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-324,https://doi.org/10.5194/tc-2019-324, 2020
Preprint under review for TC
Short summary
Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+)
Stephen L. Cornford, Helene Seroussi, Xylar S. Asay-Davis, G. Hilmar Gudmundsson, Rob Arthern, Chris Borstad, Julia Christmann, Thiago Dias dos Santos, Johannes Feldmann, Daniel Goldberg, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, Gunter Leguy, William H. Lipscomb, Nacho Merino, Gaël Durand, Mathieu Morlighem, David Polllard, Martin Rückamp, C. Rosie Williams, and Hongju Yu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-326,https://doi.org/10.5194/tc-2019-326, 2020
Preprint under review for TC
Short summary
Precipitation Ansatz dependent Future Sea Level Contribution by Antarctica based on CMIP5 Model Forcing
Christian B. Rodehacke, Madlene Pfeiffer, Tido Semmler, Özgür Gurses, and Thomas Kleiner
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-78,https://doi.org/10.5194/esd-2019-78, 2020
Revised manuscript has not been submitted
Short summary
Modelling the Antarctic Ice Sheet across the mid-Pleistocene transition – implications for Oldest Ice
Johannes Sutter, Hubertus Fischer, Klaus Grosfeld, Nanna B. Karlsson, Thomas Kleiner, Brice Van Liefferinge, and Olaf Eisen
The Cryosphere, 13, 2023–2041, https://doi.org/10.5194/tc-13-2023-2019,https://doi.org/10.5194/tc-13-2023-2019, 2019
Short summary

Related subject area

Numerical Modelling
Parameter sensitivity analysis of dynamic ice sheet models – numerical computations
Gong Cheng and Per Lötstedt
The Cryosphere, 14, 673–691, https://doi.org/10.5194/tc-14-673-2020,https://doi.org/10.5194/tc-14-673-2020, 2020
Short summary
Deep learning applied to glacier evolution modelling
Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, Clovis Galiez, Thomas Condom, and Eric Sauquet
The Cryosphere, 14, 565–584, https://doi.org/10.5194/tc-14-565-2020,https://doi.org/10.5194/tc-14-565-2020, 2020
Short summary
Feature-based comparison of sea ice deformation in lead-permitting sea ice simulations
Nils Hutter and Martin Losch
The Cryosphere, 14, 93–113, https://doi.org/10.5194/tc-14-93-2020,https://doi.org/10.5194/tc-14-93-2020, 2020
Short summary
Micromechanical modeling of snow failure
Grégoire Bobillier, Bastian Bergfeld, Achille Capelli, Jürg Dual, Johan Gaume, Alec van Herwijnen, and Jürg Schweizer
The Cryosphere, 14, 39–49, https://doi.org/10.5194/tc-14-39-2020,https://doi.org/10.5194/tc-14-39-2020, 2020
Changing characteristics of runoff and freshwater export from watersheds draining northern Alaska
Michael A. Rawlins, Lei Cai, Svetlana L. Stuefer, and Dmitry Nicolsky
The Cryosphere, 13, 3337–3352, https://doi.org/10.5194/tc-13-3337-2019,https://doi.org/10.5194/tc-13-3337-2019, 2019
Short summary

Cited articles

Aschwanden, A. and Blatter, H.: Mathematical modeling and numerical simulation of polythermal glaciers, J. Geophys. Res., 114, F01027, https://doi.org/10.1029/2008JF001028, 2009.
Aschwanden, A., Bueler, E., Khroulev, C., and Blatter, H.: An enthalpy formulation for glaciers and ice sheets, J. Glaciol., 58, 441–457, https://doi.org/10.3189/2012JoG11J088, 2012.
Blatter, H. and Greve, R.: Comparison and verification of enthalpy schemes for polythermal glaciers and ice sheets with a one-dimensional model, Polar Science, submitted, preprint at ArXiv E-Prints, arXiv:1410.6251, 2014.
Blatter, H. and Hutter, K.: Polythermal conditions in Arctic glaciers, J. Glaciol., 37, 261–269, 1991.
Bradford, J. H. and Harper, J. T.: Wave field migration as a tool for estimating spatially continuous radar velocity and water content in glaciers, Geophys. Res. Lett., 32, L08502, https://doi.org/10.1029/2004GL021770, 2005.
Publications Copernicus
Download
Short summary
We present benchmark experiments and analytical solutions to test the implementation of enthalpy and the corresponding boundary conditions in numerical ice sheet models. The results of the applied models agree well with the analytical solutions if the change in conductivity between cold and temperate ice is properly considered in the model.
We present benchmark experiments and analytical solutions to test the implementation of enthalpy...
Citation