Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
The Cryosphere, 9, 2219-2235, 2015
https://doi.org/10.5194/tc-9-2219-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
01 Dec 2015
Observations of seasonal and diurnal glacier velocities at Mount Rainier, Washington, using terrestrial radar interferometry
K. E. Allstadt1,a, D. E. Shean1,2, A. Campbell1, M. Fahnestock3, and S. D. Malone1 1University of Washington, Department of Earth and Space Sciences, Washington, USA
2University of Washington, Applied Physics Lab Polar Science Center, Washington, USA
3University of Alaska Fairbanks, Geophysical Institute, Fairbanks, Alaska, USA
anow at: USGS Geologic Hazards Science Center, Golden, CO, USA
Abstract. We present surface velocity maps derived from repeat terrestrial radar interferometry (TRI) measurements and use these time series to examine seasonal and diurnal dynamics of alpine glaciers at Mount Rainier, Washington. We show that the Nisqually and Emmons glaciers have small slope-parallel velocities near the summit (< 0.2 m day−1), high velocities over their upper and central regions (1.0–1.5 m day−1), and stagnant debris-covered regions near the terminus (< 0.05 m day−1). Velocity uncertainties are as low as ±0.02–0.08 m day−1. We document a large seasonal velocity decrease of 0.2–0.7 m day−1 (−25 to −50 %) from July to November for most of the Nisqually Glacier, excluding the icefall, suggesting significant seasonal subglacial water storage under most of the glacier. We did not detect diurnal variability above the noise level. Simple 2-D ice flow modeling using TRI velocities suggests that sliding accounts for 91 and 99 % of the July velocity field for the Emmons and Nisqually glaciers with possible ranges of 60–97 and 93–99.5 %, respectively, when considering model uncertainty. We validate our observations against recent in situ velocity measurements and examine the long-term evolution of Nisqually Glacier dynamics through comparisons with historical velocity data. This study shows that repeat TRI measurements with > 10 km range can be used to investigate spatial and temporal variability of alpine glacier dynamics over large areas, including hazardous and inaccessible areas.

Citation: Allstadt, K. E., Shean, D. E., Campbell, A., Fahnestock, M., and Malone, S. D.: Observations of seasonal and diurnal glacier velocities at Mount Rainier, Washington, using terrestrial radar interferometry, The Cryosphere, 9, 2219-2235, https://doi.org/10.5194/tc-9-2219-2015, 2015.
Publications Copernicus
Download
Short summary
Terrestrial radar interferometry measurements allow us to capture the entire velocity field of several alpine glaciers at Mount Rainier, WA, and investigate glacier dynamics. We analyze spatial patterns and compare repeat measurements to investigate diurnal and seasonal glacier changes. We find no significant diurnal variability but a very large seasonal slowdown (25 to 50%) from July to November likely due to changes in subglacial water storage. Modeling suggests 91-99% of motion is sliding.
Terrestrial radar interferometry measurements allow us to capture the entire velocity field of...
Share