Research article
01 Dec 2015
Research article | 01 Dec 2015
Observations of seasonal and diurnal glacier velocities at Mount Rainier, Washington, using terrestrial radar interferometry
K. E. Allstadt et al.
Related authors
Kinetic fractionation of gases by deep air convection in polar firn
K. Kawamura, J. P. Severinghaus, M. R. Albert, Z. R. Courville, M. A. Fahnestock, T. Scambos, E. Shields, and C. A. Shuman
Atmos. Chem. Phys., 13, 11141–11155, https://doi.org/10.5194/acp-13-11141-2013,https://doi.org/10.5194/acp-13-11141-2013, 2013
Related subject area
19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers
Michael Sigl, Nerilie J. Abram, Jacopo Gabrieli, Theo M. Jenk, Dimitri Osmont, and Margit Schwikowski
The Cryosphere, 12, 3311–3331, https://doi.org/10.5194/tc-12-3311-2018,https://doi.org/10.5194/tc-12-3311-2018, 2018
Short summary
Iron oxides in the cryoconite of glaciers on the Tibetan Plateau: abundance, speciation and implications
Zhiyuan Cong, Shaopeng Gao, Wancang Zhao, Xin Wang, Guangming Wu, Yulan Zhang, Shichang Kang, Yongqin Liu, and Junfeng Ji
The Cryosphere, 12, 3177–3186, https://doi.org/10.5194/tc-12-3177-2018,https://doi.org/10.5194/tc-12-3177-2018, 2018
Short summary
Numerical reconstructions of the flow and basal conditions of the Rhine glacier, European Central Alps, at the Last Glacial Maximum
Denis Cohen, Fabien Gillet-Chaulet, Wilfried Haeberli, Horst Machguth, and Urs H. Fischer
The Cryosphere, 12, 2515–2544, https://doi.org/10.5194/tc-12-2515-2018,https://doi.org/10.5194/tc-12-2515-2018, 2018
Short summary
Relative performance of empirical and physical models in assessing the seasonal and annual glacier surface mass balance of Saint-Sorlin Glacier (French Alps)
Marion Réveillet, Delphine Six, Christian Vincent, Antoine Rabatel, Marie Dumont, Matthieu Lafaysse, Samuel Morin, Vincent Vionnet, and Maxime Litt
The Cryosphere, 12, 1367–1386, https://doi.org/10.5194/tc-12-1367-2018,https://doi.org/10.5194/tc-12-1367-2018, 2018
Geodetic reanalysis of annual glaciological mass balances (2001–2011) of Hintereisferner, Austria
Christoph Klug, Erik Bollmann, Stephan Peter Galos, Lindsey Nicholson, Rainer Prinz, Lorenzo Rieg, Rudolf Sailer, Johann Stötter, and Georg Kaser
The Cryosphere, 12, 833–849, https://doi.org/10.5194/tc-12-833-2018,https://doi.org/10.5194/tc-12-833-2018, 2018
Short summary
The European mountain cryosphere: a review of its current state, trends, and future challenges
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018,https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Impact of impurities and cryoconite on the optical properties of the Morteratsch Glacier (Swiss Alps)
Biagio Di Mauro, Giovanni Baccolo, Roberto Garzonio, Claudia Giardino, Dario Massabò, Andrea Piazzalunga, Micol Rossini, and Roberto Colombo
The Cryosphere, 11, 2393–2409, https://doi.org/10.5194/tc-11-2393-2017,https://doi.org/10.5194/tc-11-2393-2017, 2017
Short summary
Structure and evolution of the drainage system of a Himalayan debris-covered glacier, and its relationship with patterns of mass loss
Douglas I. Benn, Sarah Thompson, Jason Gulley, Jordan Mertes, Adrian Luckman, and Lindsey Nicholson
The Cryosphere, 11, 2247–2264, https://doi.org/10.5194/tc-11-2247-2017,https://doi.org/10.5194/tc-11-2247-2017, 2017
Short summary
Recent geodetic mass balance of Monte Tronador glaciers, northern Patagonian Andes
Lucas Ruiz, Etienne Berthier, Maximiliano Viale, Pierre Pitte, and Mariano H. Masiokas
The Cryosphere, 11, 619–634, https://doi.org/10.5194/tc-11-619-2017,https://doi.org/10.5194/tc-11-619-2017, 2017
Short summary
Reconstructing the mass balance of Brewster Glacier, New Zealand, using MODIS-derived glacier-wide albedo
Pascal Sirguey, Holly Still, Nicolas J. Cullen, Marie Dumont, Yves Arnaud, and Jonathan P. Conway
The Cryosphere, 10, 2465–2484, https://doi.org/10.5194/tc-10-2465-2016,https://doi.org/10.5194/tc-10-2465-2016, 2016
Short summary
Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981
Juan Ignacio López-Moreno, Jesús Revuelto, Ibai Rico, Javier Chueca-Cía, Asunción Julián, Alfredo Serreta, Enrique Serrano, Sergio Martín Vicente-Serrano, Cesar Azorin-Molina, Esteban Alonso-González, and José María García-Ruiz
The Cryosphere, 10, 681–694, https://doi.org/10.5194/tc-10-681-2016,https://doi.org/10.5194/tc-10-681-2016, 2016
Short summary
Estimating ice albedo from fine debris cover quantified by a semi-automatic method: the case study of Forni Glacier, Italian Alps
Roberto Sergio Azzoni, Antonella Senese, Andrea Zerboni, Maurizio Maugeri, Claudio Smiraglia, and Guglielmina Adele Diolaiuti
The Cryosphere, 10, 665–679, https://doi.org/10.5194/tc-10-665-2016,https://doi.org/10.5194/tc-10-665-2016, 2016
Short summary
Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study including Hexagon KH-9 and Pléiades data
N. Holzer, S. Vijay, T. Yao, B. Xu, M. Buchroithner, and T. Bolch
The Cryosphere, 9, 2071–2088, https://doi.org/10.5194/tc-9-2071-2015,https://doi.org/10.5194/tc-9-2071-2015, 2015
Short summary
Evolution of Ossoue Glacier (French Pyrenees) since the end of the Little Ice Age
R. Marti, S. Gascoin, T. Houet, O. Ribière, D. Laffly, T. Condom, S. Monnier, M. Schmutz, C. Camerlynck, J. P. Tihay, J. M. Soubeyroux, and P. René
The Cryosphere, 9, 1773–1795, https://doi.org/10.5194/tc-9-1773-2015,https://doi.org/10.5194/tc-9-1773-2015, 2015
Short summary
Impact of debris cover on glacier ablation and atmosphere–glacier feedbacks in the Karakoram
E. Collier, F. Maussion, L. I. Nicholson, T. Mölg, W. W. Immerzeel, and A. B. G. Bush
The Cryosphere, 9, 1617–1632, https://doi.org/10.5194/tc-9-1617-2015,https://doi.org/10.5194/tc-9-1617-2015, 2015
Short summary
Deglaciation of the Caucasus Mountains, Russia/Georgia, in the 21st century observed with ASTER satellite imagery and aerial photography
M. Shahgedanova, G. Nosenko, S. Kutuzov, O. Rototaeva, and T. Khromova
The Cryosphere, 8, 2367–2379, https://doi.org/10.5194/tc-8-2367-2014,https://doi.org/10.5194/tc-8-2367-2014, 2014
Short summary
Albedo over rough snow and ice surfaces
S. Lhermitte, J. Abermann, and C. Kinnard
The Cryosphere, 8, 1069–1086, https://doi.org/10.5194/tc-8-1069-2014,https://doi.org/10.5194/tc-8-1069-2014, 2014
Monitoring water accumulation in a glacier using magnetic resonance imaging
A. Legchenko, C. Vincent, J. M. Baltassat, J. F. Girard, E. Thibert, O. Gagliardini, M. Descloitres, A. Gilbert, S. Garambois, A. Chevalier, and H. Guyard
The Cryosphere, 8, 155–166, https://doi.org/10.5194/tc-8-155-2014,https://doi.org/10.5194/tc-8-155-2014, 2014
Decay of a long-term monitored glacier: Careser Glacier (Ortles-Cevedale, European Alps)
L. Carturan, C. Baroni, M. Becker, A. Bellin, O. Cainelli, A. Carton, C. Casarotto, G. Dalla Fontana, A. Godio, T. Martinelli, M. C. Salvatore, and R. Seppi
The Cryosphere, 7, 1819–1838, https://doi.org/10.5194/tc-7-1819-2013,https://doi.org/10.5194/tc-7-1819-2013, 2013
Area and volume loss of the glaciers in the Ortles-Cevedale group (Eastern Italian Alps): controls and imbalance of the remaining glaciers
L. Carturan, R. Filippi, R. Seppi, P. Gabrielli, C. Notarnicola, L. Bertoldi, F. Paul, P. Rastner, F. Cazorzi, R. Dinale, and G. Dalla Fontana
The Cryosphere, 7, 1339–1359, https://doi.org/10.5194/tc-7-1339-2013,https://doi.org/10.5194/tc-7-1339-2013, 2013
Gravity effect of glacial ablation in the Eastern Alps – observation and modeling
P. Arneitz, B. Meurers, D. Ruess, C. Ullrich, J. Abermann, and M. Kuhn
The Cryosphere, 7, 491–498, https://doi.org/10.5194/tc-7-491-2013,https://doi.org/10.5194/tc-7-491-2013, 2013
Cited articles
Allstadt, K. and Malone, S. D.: Swarms of repeating stick-slip icequakes triggered by snow loading at Mount Rainier volcano, J. Geophys. Res.-Earth, 119, 1180–1203, https://doi.org/10.1002/2014JF003086, 2014.
Anderson, R. S., Anderson, S. P., MacGregor, K. R., Waddington, E. D., O'Neel, S., Riihimaki, C. A., and Loso, M. G.: Strong feedbacks between hydrology and sliding of a small alpine glacier, J. Geophys. Res.-Earth, 109, F03005, https://doi.org/10.1029/2004JF000120, 2014.
Bartholomaus, T. C., Anderson, R. S., and Anderson, S. P.: Response of glacier basal motion to transient water storage, Nat. Geosci., 1, 33–37, https://doi.org/10.1038/ngeo.2007.52, 2007.
Burgmann, R., Rosen, P. A., and Fielding, E. J.: Synthetic aperture radar interferometry to measure Earth's surface topography and its deformation, Annu. Rev. Earth Pl. Sc., 28, 169–209, https://doi.org/10.1146/annurev.earth.28.1.169, 2000.
Caduff, R., Schlunegger, F., Kos, A., and Wiesmann, A.: A review of terrestrial radar interferometry for measuring surface change in the geosciences, Earth Surf. Proc. Land., https://doi.org/10.1002/esp.3656, online first, 2014.
Crandell, D. R. and Fahnestock, R. K.: Rockfalls and avalanches from Little Tahoma Peak on Mount Rainier Washington, Contribution to General Geology 1965, Geological Survey Bulletin 1221-A, US Geological Survey, Washington, D.C., A1–A30, 1965.
Driedger, C. L. and Kennard, P. M.: Ice volumes on cascade volcanoes: Mount Rainer, Mount Hood, Three Sisters, Mount Shasta, USGS Professional Paper 1365, USGS, Washington, DC, 1986.
Efron, B.: Bootstrap Methods: another look at the jackknife, Ann. Stat., 7, 1–26, https://doi.org/10.1214/aos/1176344552, 1979.
Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.: Capabilities and performance of Elmer/Ice, a new-generation ice sheet model, Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, 2013.
Goldstein, R.: Atmospheric limitations to repeat-track radar interferometry, Geophys. Res. Lett., 22, 2517–2520, 1995.
Greve, R. and Blatter, H.: Dynamics of Ice Sheets and Glaciers, Springer, Berlin, Germany, https://doi.org/10.1007/978-3-642-03415-2, 2009.
Heliker, C., Johnson, A., and Hodge, S.: Nisqually Glacier, Mount Rainier, Washington, 1857–1979: A Summary of the Long-Term Observations and a Comprehensive Bibliography, USGS Open-file Report 83-541, US Geological Survey, Tacoma, WA, p. 20, 1984.
Hodge, S. M.: The movement and basal sliding of the Nisqually Glacier, Mt. Rainier: Seattle, Wash., PhD dissertation, University of Washington, Department of Atmospheric Sciences, Washington, 1972.
Hodge, S. M.: Variations in the sliding of a temperate glacier, J. Glaciol., 13, 349–369, 1974.
Joughin, I. R., Kwok, R., and Fahnestock, M. A.: Interferometric estimation of three-dimensional ice-flow using ascending and descending passes, IEEE T. Geosci. Remote, 36, 25–37, https://doi.org/10.1109/36.655315, 1998.
Le Meur, E., Gagliardini, O., Zwinger, T., and Ruokolainen, J.: Glacier flow modelling: a comparison of the Shallow Ice Approximation and the full-Stokes solution, C. R. Phys., 5, 709–722, https://doi.org/10.1016/j.crhy.2004.10.001, 2004.
Massonnet, D. and Feigl, K. L.: Radar interferometry and its application to changes in the Earth's surface, Rev. Geophys., 36, 441–500, https://doi.org/10.1029/97RG03139, 1998.
National Park Service: Annual snowfall totals at Paradise, 1920 to 2013, Dept. of the Interior, available at: http://www.nps.gov/mora/planyourvisit/upload/Annual-snowfall-totals-July15-w-centlogo.pdf (last access: 29 November 2014), 2013.
Noferini, L., Mecatti, D., Macaluso, G., Pieraccini, M., and Atzeni, C.: Monitoring of Belvedere Glacier using a wide angle GB-SAR interferometer, J. Appl. Geophys., 68, 289–293, https://doi.org/10.1016/j.jappgeo.2009.02.004, 2009.
Nylen, T. H.: Spatial and Temporal Variations of Glaciers (1913–1994) on Mt. Rainier and the Relation with Climate, Masters thesis, Portland State University, Department of Geology, Portland, OR, 2004.
Riedel, J.: Long Term Monitoring of Glaciers at Mount Rainier National Park, Narrative and Standard Operating Procedure Version 1.0, Natural Resource Report NPS/NCCN/NRR-2010/175, National Park Service, Fort Collins, CO, 2010.
Riedel, J. and Larrabee, M. A.: Mount Rainier National Park Annual Glacier Mass Balance Monitoring, Water Year 2011, North Coast and Cascades Network, Natural Resource Technical Report NPS/NCCN/NRDS-2015/752, National Park Service, Fort Collins, CO, 2015.
Riesen, P., Strozzi, T., Bauder, A., Wiesmann, A., and Funk, M.: Short-term surface ice motion variations measured with a ground-based portable real aperture radar interferometer, J. Glaciol., 57, 53–60, https://doi.org/10.3189/002214311795306718, 2011.
Robinson, J. E., Sisson, T. W., and Swinney, D. D.: Digital topographic map showing the extents of glacial ice and perennial snowfields at Mount Rainier, Washington, based on the LiDAR survey of September 2007 to October 2008, US Geological Survey Digital Data Series 549, United States Geological Survey, http://pubs.usgs.gov/ds/549/ (last access: July 2015), 2010.
Shean, D. E., Alexandrov, O., Moratto, Z., Smith, B. E., Joughin, I. R., Porter, C. C. and Morin, P. J.: An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very high-resolution commercial stereo satellite imagery, ISPRS J. Photogramm. Remote Sens, submitted, 2015.
Sisson, T., Robinson, J., and Swinney, D.: Whole-edifice ice volume change AD 1970 to 2007/2008 at Mount Rainier, Washington, based on LiDAR surveying, Geology, 39, 639–642, https://doi.org/10.1130/G31902.1, 2011.
Veatch, F.: Analysis of a 24-Year Photographic Record of Nisqually Glacier, Mount Rainier National Park, Washington, Geological Survey Professional Paper 631, United States Geological Survey, Washington, DC, 1969.
Voytenko, D., Dixon, T. H., Howat, I. M., Gourmelen, N., Lembke, C., Werner, C. L., De la Pena, S., and Oddsson, B.: Multi-year observations of Breidamerkurjokull, a marine-terminating glacier in southeastern Iceland, using terrestrial radar interferometry, J. Glaciol., 61, 42–54, https://doi.org/10.3189/2015JoG14J099, 2015.
Walkup, L. C., Beason, S. R., Kennard, P. M., Ohlschlager, J. G., and Stifter, A. C.: Surficial Ice Velocities of the Lower Nisqually Glacier and their Relationship to Outburst Flood Hazards at Mount Rainier National Park, Washington, United States, Paper 240-3, 2013 GSA Annual Meeting Abstracts, Denver, 2013.
Werner, C., Strozzi, T., Wiesmann, A., and Wegmuller, U.: A real-aperture radar for ground-based differential interferometry, Radar Conference, 2009 IEEE, Pasadena, 3, 1–4, https://doi.org/10.1109/RADAR.2009.4977136, 2008.
Werner, C., Wiesmann, A., Strozzi, T., Kos, A., Caduff, R., and Wegmiuler, U: The GPRI multi-mode differential interferometric radar for ground-based observations, Synthetic Aperture Radar, 2012, 9th European Conference on EUSAR, Nuremberg, Germany, 304–307, 2012.
Zebker, H. A., Rosen, P. A., and Hensley, S.: Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps, J. Geophys. Res.-Solid, 102, 7547–7563, https://doi.org/10.1029/96JB03804, 1997.
Zwinger, T., Greve, R., Gagliardini, O., Shiraiwa, T., and Lyly, M.: A full stokes-flow thermo-mechanical model for firn and ice applied to the Gorshkov crater glacier, Kamchatka, Ann. Glaciol., 45, 29–37, 2007.