Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
The Cryosphere, 9, 2429-2446, 2015
https://doi.org/10.5194/tc-9-2429-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
21 Dec 2015
Committed retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibration
D. N. Goldberg1, P. Heimbach2, I. Joughin3, and B. Smith3 1Univ. of Edinburgh, School of GeoSciences, Edinburgh, UK
2University of Texas, Institute for Computational Engineering and Sciences/Institute for Geophysics, Austin, Texas, USA
3Applied Physics Laboratory, University of Washington, Seattle, USA
Abstract. A glacial flow model of Smith, Pope and Kohler Glaciers is calibrated by means of control methods against time varying, annually resolved observations of ice height and velocities, covering the period 2002 to 2011. The inversion – termed "transient calibration" – produces an optimal set of time-mean, spatially varying parameters together with a time-evolving state that accounts for the transient nature of observations and the model dynamics. Serving as an optimal initial condition, the estimated state for 2011 is used, with no additional forcing, for predicting grounded ice volume loss and grounding line retreat over the ensuing 30 years. The transiently calibrated model predicts a near-steady loss of grounded ice volume of approximately 21 km3 a−1 over this period, as well as loss of 33 km2 a−1 grounded area. We contrast this prediction with one obtained following a commonly used "snapshot" or steady-state inversion, which does not consider time dependence and assumes all observations to be contemporaneous. Transient calibration is shown to achieve a better fit with observations of thinning and grounding line retreat histories, and yields a quantitatively different projection with respect to ice volume loss and ungrounding. Sensitivity studies suggest large near-future levels of unforced, i.e., committed sea level contribution from these ice streams under reasonable assumptions regarding uncertainties of the unknown parameters.

Citation: Goldberg, D. N., Heimbach, P., Joughin, I., and Smith, B.: Committed retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibration, The Cryosphere, 9, 2429-2446, https://doi.org/10.5194/tc-9-2429-2015, 2015.
Publications Copernicus
Download
Short summary
We calibrate a time-dependent ice model through optimal fit to transient observations of surface elevation and velocity, a novel procedure in glaciology and in particular for an ice stream with a dynamic grounding line. We show this procedure gives a level of confidence in model projections that cannot be achieved through more commonly used glaciological data assimilation methods. We show that Smith Glacier is in a state of retreat regardless of climatic forcing for the next several decades.
We calibrate a time-dependent ice model through optimal fit to transient observations of surface...
Share