Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 9, issue 1
The Cryosphere, 9, 245–253, 2015
https://doi.org/10.5194/tc-9-245-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 9, 245–253, 2015
https://doi.org/10.5194/tc-9-245-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 09 Feb 2015

Research article | 09 Feb 2015

Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

M. P. Lüthi et al.
Related authors  
Calving event size measurements and statistics of Eqip Sermia, Greenland, from terrestrial radar interferometry
Andrea Walter, Martin P. Lüthi, and Andreas Vieli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-102,https://doi.org/10.5194/tc-2019-102, 2019
Manuscript under review for TC
Short summary
In-situ measurements of the ice flow motion at Eqip Sermia Glacier using a remotely controlled UAV
Guillaume Jouvet, Eef van Dongen, Martin P. Lüthi, and Andreas Vieli
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2019-6,https://doi.org/10.5194/gi-2019-6, 2019
Revised manuscript under review for GI
Multisensor validation of tidewater glacier flow fields derived from SAR intensity tracking
Christoph Rohner, David Small, Daniel Henke, Martin P. Lüthi, and Andreas Vieli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-278,https://doi.org/10.5194/tc-2018-278, 2019
Revised manuscript accepted for TC
Short summary
Calving relation for tidewater glaciers based on detailed stress field analysis
Rémy Mercenier, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 12, 721–739, https://doi.org/10.5194/tc-12-721-2018,https://doi.org/10.5194/tc-12-721-2018, 2018
Short summary
Multi-method observation and analysis of a tsunami caused by glacier calving
Martin P. Lüthi and Andreas Vieli
The Cryosphere, 10, 995–1002, https://doi.org/10.5194/tc-10-995-2016,https://doi.org/10.5194/tc-10-995-2016, 2016
Short summary
Related subject area  
Greenland
The surface albedo of the Greenland Ice Sheet between 1982 and 2015 from the CLARA-A2 dataset and its relationship to the ice sheet's surface mass balance
Aku Riihelä, Michalea D. King, and Kati Anttila
The Cryosphere, 13, 2597–2614, https://doi.org/10.5194/tc-13-2597-2019,https://doi.org/10.5194/tc-13-2597-2019, 2019
Short summary
Estimating Greenland tidewater glacier retreat driven by submarine melting
Donald A. Slater, Fiamma Straneo, Denis Felikson, Christopher M. Little, Heiko Goelzer, Xavier Fettweis, and James Holte
The Cryosphere, 13, 2489–2509, https://doi.org/10.5194/tc-13-2489-2019,https://doi.org/10.5194/tc-13-2489-2019, 2019
Short summary
Submarine melt as a potential trigger of the North East Greenland Ice Stream margin retreat during Marine Isotope Stage 3
Ilaria Tabone, Alexander Robinson, Jorge Alvarez-Solas, and Marisa Montoya
The Cryosphere, 13, 1911–1923, https://doi.org/10.5194/tc-13-1911-2019,https://doi.org/10.5194/tc-13-1911-2019, 2019
Short summary
Brief Communication: Outburst floods triggered by periodic drainage of subglacial lakes, Isunguata Sermia, West Greenland
Stephen J. Livingstone, Andrew J. Sole, Robert D. Storrar, Devin Harrison, Neil Ross, and Jade Bowling
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-137,https://doi.org/10.5194/tc-2019-137, 2019
Revised manuscript accepted for TC
Short summary
Surface mass balance downscaling through elevation classes in an Earth System Model: analysis, evaluation and impacts on the simulated climate
Raymond Sellevold, Leonardus van Kampenhout, Jan T. M. Lenaerts, Brice Noël, William H. Lipscomb, and Miren Vizcaino
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-122,https://doi.org/10.5194/tc-2019-122, 2019
Revised manuscript accepted for TC
Short summary
Cited articles  
Ahlstrom, A. P.: Previous glaciological activities related to hydropower at Paakitsoq, Ilulissat, West Greenland, Tech. Rep., 25, Danmarks og Grønlands Geologiske Undersøgelse, 2007.
Andrews, L. C., Catania, G. A., Hoffman, M. J., Gulley, J. D., Lüthi, M. P., Ryser, C., Hawley, R. L., and Neumann, T. A.: Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet, Nature, 514, 80–83, https://doi.org/10.1038/nature13796, 2014.
Box, J. E.: Greenland Ice Sheet mass balance reconstruction, Part II: Surface mass balance (1840–2010), J. Climate, 26, 6974–6989, https://doi.org/10.1175/JCLI-D-12-00518.1, 2013
Budd, W., Jacka, T., Jenssen, D., Radok, U., and Young, N.: Derived physical characteristics of the Greenland Ice Sheet, Meteor. Dept. Pub. no. 23, University of Melbourne, Melbourne, 1982.
Catania, G. A. and Neumann, T. A.: Persistent englacial drainage features in the Greenland Ice Sheet, Geophys. Res. Lett., 37, L02501, https://doi.org/10.1029/2009GL041108, 2010.
Publications Copernicus
Download
Short summary
We analyze the thermal structure of the Greenland Ice Sheet with a heat flow model. New borehole measurements indicate that more heat is stored within the ice than would be expected from heat diffusion alone. We conclude that temperate paleo-firn and cyro-hydrologic warming are essential processes that explain the measurements.
We analyze the thermal structure of the Greenland Ice Sheet with a heat flow model. New borehole...
Citation